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Memory formation involves binding of contextual features into a unitary
representation', whereas memory recall can occur using partial combinations of
these contextual features. The neural basis underlying the relationship between a
contextual memory and its constituent features is not well understood; in particular,
where features are represented in the brain and how they drive recall. Here, to gain
insightinto this question, we developed a behavioural task in which mice use features
torecall an associated contextual memory. We performed longitudinal imagingin
hippocampus as mice performed this task and identified robust representations of
global context but not of individual features. To identify putative brain regions that
provide feature inputs to hippocampus, we inhibited cortical afferents while imaging
hippocampus during behaviour. We found that whereas inhibition of entorhinal
cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior
cingulate led to a highly specific silencing of context neurons and deficits in
feature-based recall. We next developed a preparation for simultaneous imaging of
anterior cingulate and hippocampus during behaviour, which revealed robust
population-level representation of features in anterior cingulate, thatlag
hippocampus context representations during training but dynamically reorganize to
lead and target recruitment of context ensembles in hippocampus during recall.
Together, we provide the first mechanistic insights into where contextual features are
represented in the brain, how they emerge, and how they access long-range episodic
representations to drive memory recall.

A contextual memory is the unification of multiple streams of
sensory information entwined in a spatiotemporal framework.
The hippocampus encodes such memories as aunified conjunctive rep-
resentation'*. This is thought to result from recurrent networks that
merge associated concepts into a singular representation across the
CA3-CAlnetwork® 8. Thus, global conjunctive representations of a con-
textarewidely reportedin hippocampus, but it remains unknown where
individual features are stored. The existence of afeature representation,
separate froma conjunctive representation, would enable featurestobe
independently accessed during feature recognition®, feature-based
memory retrieval”, memory updating'®" and adaptive coding™". Yet,
the neurobiological substrates of feature representations remain unclear.

Itis possible that feature representations are: (1) embedded within
hippocampus, such that neurons encoding discrete sensory stim-
uli*!*? function as feature-selective neurons capable of recruiting a
population-level contextual response, or (2) laid out in separate or
distributed brain areas that have targeted access to hippocampal
conjunctive representations. To address this question, we developed
approaches to perform real-time visualization and manipulation
of hippocampal and cortical circuits as mice form, store and recall
multi-modal contextual memories.

Conjunctive memory representationsin CAl

We developed ahead-fixed virtual reality-based memory retrieval task
inwhich mice navigate anendless corridor and repeatedly experience
three randomly sequenced multi-modal contexts, each defined by a
unique combination of sensory cues (auditory, visual, olfactory and
texture) (Fig. 1a; Methods). During training, mice were trained to associ-
ate one context with reward (sucrose delivery, leading to enhanced lick-
ing), another as neutral (water delivery) and a third context as aversive
(airpuffand water delivery, leading to lick suppression). Learning was
assessed by significant modulation of lick rates on20% of interspersed
probe trials during which reinforcement was omitted.

During training, mice demonstrated a significant increase in lick
rate (Fig. 1a; n =12 mice, 24 sessions) and decrease in latency to lick
(Extended DataFig. 1a), on probe trials of reward versus aversive con-
text, indicating successful learning of the contextual associations. This
learning was hippocampal dependent (Extended DataFig. 1c; Methods).

During the retrieval phase of the task, mice were provided with trials
consisting of full (that is, AVOT (trials are denoted by cues as follows:
auditory (A), visual (V), olfactory (O) and texture(T))) or partial fea-
tures (thatis, OT, AT or AOT) of the original multi-modal contexts in
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Fig.1| The hippocampus CAl encodes conjunctive representations of
context. a, Head-fixed virtual reality setup with training paradigm (top).
Training comprises 20 s multisensory experience with context-specific
reinforcement. Bottom left, lick rates in reward, neutral and aversive context
acrossreinforced and probe trials. n =12 mice, 24 sessions; **P < 0.01,
***P<(0.005,****P<0.0001, two-way ANOVA with Sidak’s post hoc comparison.
Bottom right, moving average lick rates across probe trials (thin lines) from one
mouse aligned to contextentry. Thick line shows session average.b, Top,
retrieval paradigm. Left, lick rate on full (AVOT) or partial features (O, T, AT, AO,
OTand AOT) of the respective contexts for three mice. Dataare mean + s.e.m.;
*P<0.05,**P<0.01,***P<0.005, two-way ANOVA with multiple comparisons.
Right, moving average lick responses fromrepresentative mouse. Reinf.,
reinforcement. ¢, Histology (scale bar, 500 um) and z-projection images of
two-photonrecording (mean over time; scale bars, 160 pm) of GCaMP
expressing dorsal CAlneurons with GRIN implants capturing same field of
view across training and retrieval.d,e, Activity of areward (d) and aversive

the absence of reinforcements (n =12 trials per day). On average, mice
performed successful retrievalin full and partial-feature trials (n = 3mice
shown; Fig.1b and Extended Data Fig. 1b). Notably, individual mice used
different features to drive memory recall (Fig. 1b), suggesting the use of
sensory integrationrather thanasingle externally directed salient cue to
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(e) context-selective neuroninreward (red) and aversive (black) probe trials
(meanresponseinopaqueline) with heat map showingindividual trial
responses. f, Representative neurons exhibiting conjunctive representation of
reward (right) or aversive (left) contexts showing significant responsesto all
features of only one context. g, Fraction of context-selective (in training),
feature-selective or conjunctive neurons (inretrieval). n =3 mice, 5sessions for
training, 9 sessionsinretrieval; **P=0.003; paired t-test during retrieval.

h, Significant divergence onretrieval trials of reward (R, red) versus aversive

(F, black) feature (AVOT, AT, OT, AOT) population trajectories froma
representative mouse. i, Performance of alinear SVM to classify context,
trained onthree features and tested on aheld-out feature of the same context,
demonstrating shared underlying dynamics for all features of agiven context.
n=3mice,9sessions; dataare mean +s.e.m.j, Schematicillustrating the
questionof where features are represented and how they access CAl
conjunctiverepresentations. Details of statistical analyses are shown
inSupplementary Table1.

learn andrecall contextual memories. Since some mice did not reliable
classify neutral context as a distinct third context, in subsequent experi-
ments we focused our analysis on reward and aversive contexts only.
To assess whether hippocampus encodes context representa-
tions, features or both, we injected mice with a genetically encoded



Ca?"indicator (GCaMP6f) and implanted them with a gradient index
(GRIN) lens above dorsal CALl. This enabled volumetric two-photon
imaging of the same field of view throughout training and retrieval
(Fig. 1c and Extended Data Figs. 1d,e and 2a). Fast volumetric images
(800 pm (x) x 800 pum (y) x 150 pm (2)) were collected, providing
access tomore than 500 neurons per session (Extended Data Fig. 2b),
from which significant calcium events were extracted (Extended Data
Fig.2c-g) and aligned to stimuliand behaviour. During training, a sub-
stantial fraction (approximately 10%) of neurons responded selectively
to either the reward or aversive context (Fig. 1d,e,g). Of note, these
context-selective neurons emerge only after learning (not a purely
sensory representation; Extended Data Fig. 3a,c), remain stably selec-
tive throughout retrieval (Extended Data Fig. 3b,d), exist on probe
trials (not due to reinforcement; Fig. 1d,e and Extended Data Fig. 3e),
and are not time-locked to speed or licking (not movement related;
Extended Data Fig. 4a-e), and are thus a cognitive signal of context
representing the learned association. At the population level, we
also observed significant divergence of neural trajectories and high
context-decoding accuracy within the first few seconds of trial onset
(Extended Data Fig. 3f,g).

During retrieval, we again observed robust conjunctive responses,
butrarely observed neurons with feature-selective responses (Fig.1f,g,
9% conjunctive versus 1.1% feature-selective; chance = 0.5% and 0.8%
respectively; Extended Data Fig. 3h; n =3 mice, 9 sessions). Indeed,
nearly all neurons that responded to a particular feature of a given
context (Methods; Extended DataFig. 2g,h) also showed significantand
prominent responses to all other features of the same context (Fig. 1f
and Extended Data Figs. 3b,d and 4f). At the population level, neural
state-space trajectories projected onto alow-dimensional subspace'
demonstrated prominent divergence of context-evoked trajectories
but no discernable separation of feature-evoked trajectories (Fig. 1h
and Extended Data Fig. 4g). Finally, we assessed the performance of a
linear support vector machine (SVM) to classify context when trained
on trials containing three different features and tested on trials of a
fourth held-out feature. We found that the decoding accuracy of the
model exceeded 80% within the first few seconds of trial onset for any
feature type (Fig. 1i), indicating significant shared underlying dynamics
for all features of a given context. Taken together, these data demon-
strate a prominent conjunctive representation of multi-modal context
in hippocampus, with a lack of feature-specific representations, as
previously suggested' . This raises two questions: (1) where features
areencoded, and (2) how theyinteract with or recruit appropriate con-
junctive representations in hippocampus for memory recall (Fig. 1j).

ACisrequired forfeature-based recall

We suspected that extra-hippocampal brain circuits provide feature
inputsto CAl, sinceintra-hippocampal circuits route through CA3, where
the recurrent architecture is likely to create conjunctive rather than
feature representations. We performed retrograde tracing to identify
brainregionsthat send direct projections to dorsal hippocampus (Fig. 2a
and Extended Data Figs. 5a and 7f). Two of the strongest projections
originated from the anterior cingulate region of the prefrontal cortex and
lateral region of the entorhinal cortex, both of which we confirmed also
synapse onto CAl neuronsinthe anterograde direction (Extended Data
Fig.7a-c).Bothregions areknownto have rolesinmemory processing:
prefrontal cortex has previously been demonstrated to be required for
memory retrieval?? %, and the identification of direct monosynaptic
prefrontal-to-hippocampus projections*? (Supplementary Note1) high-
lights anterior cingulate (AC) cortex as an attractive candidate for feature
recognitionandrecall. Conversely, the hippocampusalsoreceives dense
projections fromthe lateral entorhinal cortex (LEC), where both conjunc-
tive and feature-like responses have been observed”>°. Thus, we aimed
to dissect whether feature codes necessary for memory recall could be
conveyed to the hippocampus fromthe AC, LEC or both.

To dissect the contributions of each region to hippocampal physi-
ology and behaviour, we inhibited AC or LEC while simultaneously
imaging CAlduringfeature-based recall by expressing a soma-localized
inhibitory opsin, st-GtACR2 (ref.*), in excitatory neurons of ACor LEC
and implanted low-profile, angled fibreoptic cannulas ipsilaterally to
the GRIN-imaged CAl region. We targeted a field of view in CAlknown
to contain inputs from both LEC and AC (Fig. 2b and Extended Data
Fig.5b). Duringretrieval, light was delivered on half of the trials, and the
other half served as light-off controls. Light-on trials achieved robust
inhibition of post-synaptic neurons in CAl (Fig. 2¢,d). We aimed to
minimize spectral cross-talk by titrating 470 nm light power at the
fibre tip to less than 1.5 mW to minimize unintended activation of
GCaMP, and confirmed that there was minimal unintended activa-
tion of soma-localized GtACR during two-photon imaging at 920 nm
(Extended Data Fig. 6a-d; Methods). Inhibition of AC led to silencing
ofasubstantially greater proportion of context-selective neurons than
did LEC inhibition, and than would be expected by chance, despite
both projections eliciting similar overall CAl silencing (Fig. 2d and
Extended Data Fig. 6i).

To further characterize the functional inhibition in CAl, we quan-
tified changes in dF/F onsets (the fraction of time CAl context neu-
rons were active) in light-on versus light-off trials compared with
non-context-selective neurons. LEC inhibition led to broad and wide-
spread inhibition of CAlneurons, whereas ACinhibitionled toselective
inhibition of context-selective neurons with negligible inhibition of
non-context-selective neurons (Fig. 2e,f). Quantifying this inhibition
across all mice reveals a specificity for silencing of context-selective
neurons during ACinhibition, for both full-and partial-feature retrieval
conditions, and in both reward and aversive contexts, whichis absent
during LEC inhibition (Fig. 2g and Extended Data Fig. 6e-h,j k). Con-
sistent with this, anterograde tracing from AC or LEC overlaid with FOS
stain following training (to mark context neurons) revealed a greater
fraction of CAl neurons receiving inputs from AC compared with LEC
(Extended Data Fig. 7d,e, n =4 mice each, P < 0.01, Welch'’s t-test). In
further support of this functional divergence between AC and LEC, we
observed that AC and LEC project to almost entirely separate subset
of neuronsin CAl (Extended Data Fig. 7a-c).

Todetermine whether the targeted suppression of CAl context neu-
rons by ACinhibition leads to behavioural deficits, we inhibited AC or
LEC (CaMKII-stGtACR-mCherry) bilaterally (using CaMKII-mCherry
as a control) and delivered light on half of the trials, while the other
half served as light-off controls. We observed significant deficits in
feature-based recall in light-on compared with light-off trials for all
feature-based retrieval conditions during AC inhibition, which was
absent during LEC inhibition, and in AC or LEC mCherry control mice.
These dataindicate aprominentrole for ACin directing memory recall
(Fig. 2h,i) and further, that this occurs via targeted interactions with
CAl (Extended Data Fig. 7e) with AC sending direct excitatory inputs
to CAl (Extended Data Fig. 7g-iand Supplementary Note 1), although
we do not exclude the possibility that these effects are also owing to
other downstream collaterals of AC or indirect interactions with CA1.

Feature representationsin AC

Totest whether ACindeed encodes for features, we next performed lon-
gitudinal two-photonimaging of AC throughout training and retrieval,
targeting the subregion of AC with known direct projections to hip-
pocampus?®. After injecting GCaMP6f in AC, we performed a cranio-
tomy, and implanted a coverslip to gain chronic optical access to layer
2/3 AC neurons (Fig.3aand Extended Data Fig. 8a-h). We collected fast
volumetricimages (800 pm (x) x 800 pum (y) x 150 pm (2)) of AC, pro-
vidingaccess to more than 1,000 neurons per session. During training,
and similarly to CAl, AC neurons displayed robust context selectivity
at the single neuron and population levels (Fig. 3b and Extended Data
Fig. 8i,j). However, during retrieval, we observed a stark difference in
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Fig.2|AC, butnotLEC, isnecessary for feature-based memoryrecall. a,
RetroAAV-tdT injectionin dorsal hippocampus labels afferents from AC, LEC,
claustrum, medial septum, anterior thalamus, hypothalamus, contralateral
hippocampus and amygdala (denoted with asterisks) Scale bar, 3,000 pm;
further detail in Extended DataFig. 5a.b,c, AC or LECinhibition with
simultaneous CAlimaging (b) shows robust inhibition of some neurons (top)
butnotothers (bottom) (c). The shaded arearepresentslight delivery.d, There
isnosignificant difference between fraction of CAlneuronsinhibited during
LECinhibition (n =4 mice, 7 sessions) versus ACinhibition (n = 3 mice, 6
sessions) (top), but CAlcontext neurons are preferentially inhibited during AC
inhibition (bottom) versus LEC (Student’s ¢-test, **P=0.001) or compared to
chance (dashedline).*P=0.015, Wilcoxon signed-rank test. Boxes show mean
and quartiles and whiskers extend to minimum and maximum. e,f, Left, rasters
of binarized activity from 50 neuronsin CAlwithinhibition of LEC (e) or AC (f)
inreward and aversive feature trials grouped by context-responsive versus

the tuning properties of single neurons in AC compared with CA1. AC
neurons displayed feature selectivity as well as mixed selectivity to
combinations of features, rather than conjunctive tuning (Fig. 3c-eand
Extended Data Fig. 8k,l), and their emergence required hippocampal
activity (Extended Data Fig. 8m-o0).

To characterize the effect of the observed feature selectivity and
mixed selectivity at the population level, we defined ensembles of neu-
rons as feature-responsive if the mean ensemble activity toa particular
feature was greater than expected by chance. We found that separate
ensembles drove feature selectivity in AC, whereas such ensembles
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non-context-responsive neurons from one mouse. Right, activity of neurons.
Asignificant left shift (*P < 0.05, Wilcoxon signed-rank test) is observed on
inhibited trialsacross both groups during LECinhibitionbutonlyin
context-specific neurons during AC inhibition (**P< 0.01). g, Inhibition of
context versus non-context neuron activity across all trial types (AVOT, AOT
and OT) combined for aversive and reward trials.n=3 mice, 6 sessions for LEC
(top); n=4mice, 7 sessions for AC (bottom); each sessionisanindividual data
point. F; 3 =38.92,P<0.0001for AC; F; 50,=2.801, P=0.11for LEC, two-way
ANOVA with Sidak’s post hoc comparison. h,i, Bilateral optogeneticinhibition
of LEC (h) or AC (i) during memory retrieval showing behavioural performance
duringinhibited (light-on) versus control (light-off) trials for each trial type, in
opsin (GtACR) versus control (mCherry) cohorts. Data points represent
individual mice. F;;;,=43.79, P < 0.0001for AC-GtACR; F{; ;5= 0.82, P=0.37 for
LEC GtACR, two-way ANOVA with Sidak’s post hoc comparison. Details of
statistical analyses are shownin Supplementary Table1.

were highly overlapping in CAl (Fig. 3f,g and Extended Data Fig. 9a,
compare with Extended Data Fig. 4f). Thus, mixed selectivity of single
neurons gave rise to robust feature selectivity at the population level,
a coding strategy that has been previously highlighted in cortex®3*,
These AC feature ensembles, in contrast to CAl, display negligible
responses to other features of the same or opposite context (Fig. 3f,g
and Extended Data Fig. 9b). When AC feature ensembles did generalize
to other features, they were almost as likely to generalize to features
of the opposite context, as they were to features of the same context
(Fig. 3h and Extended Data Fig. 9c). These findings confirm that AC
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Fig.3|PopulationcodesforfeaturerepresentationinAC.a,Schematicand
z-projectionimages of two-photonrecordingin AC.Scalebars,160 um.b, Reward
(top) and aversive (bottom) context-selective neurons, sorted by onset time,
displayed for reward (left) and aversive (right) probe trials from one mouse.

¢, Fraction of context-selective (in training), feature-selective or conjunctive (in
retrieval) neuronsin AC.n=7mice, 9 sessionsintraining, 11sessionsinretrieval;
paired t-testinretrieval, **P=0.002.d, Comparison of conjunctive and feature
responsesin ACand CAl.n=3mice, 9 sessionsfor CAl;n=7mice,11sessions for
AC;***P<0.0001,***P=0.0005, two-way ANOVA with Sidak’s post hoc
comparison. e, Representative recordings from four neurons, eachinadifferent
colour, exhibiting feature selectivity in AC and conjunctive representationin CA1l
duringretrieval. f,g, dF/Factivity of feature-responsive neuronstoall other
feature presentationsin AC (left) and CA1(right).n=3 mice each; dataare

mean +s.e.m (f) orheat map (g), with the adjacent columnindicating whether the

neuronwas statistically classified as feature-selective (white) or not (black).

h, df/Fresponse of afeature-selective ensemblerelative to other features of the
same context (dark) versus the opposite context (light) in ACand CAl.n =7 mice,
11sessions for AC; n =3 mice, 9 sessions for CA1;****¢ < 0.0001, *q = 0.027, multiple
paired t-test. Further detailsin Extended Data Fig. 9c.1i, Ratio of context-to-feature
separation acrossamaximally separating hyperplaneinstatespaceonretrieval
trials.n=7mice,11sessions for AC; n=3mice, 9 sessions for CAl;dataare

mean +s.e.m.j, Top, timeline of TRAP2 paradigm to inhibit feature-coding
neurons. Bottom, percentage of AC neurons thatexpressed GtACRinthe TRAP
habituationand TRAP feature-coding cohort. k, Left, TRAP mice display deficits
infeature-based recall on R6, whichisrescued during light-offonR7 (F, ,5)= 64.39,
P<0.0001).Right, thereisnobehavioural deficitinthe TRAP habituation cohort
(F,20 = 0.14, P=0.71; two-way ANOVA with Sidak’s post hoc comparison). Details
of statistical analyses are showninSupplementary Table 1.

exhibits a population code for features, whereas CAl binds these fea-
tures into a coherent conjunctive code of the global context.

Finally, to examine the differences in encoding mechanisms within
ACand CAlinaway thatdoes notrely on pre-selecting feature-coding
ensembles, we calculated the ratio (separationindex) of inter-context
separation (features of opposite context) to intra-context separation
(features of same context) along a hyperplane that maximally separated
reward and aversive feature trials (Fig. 3i; decoding accuracy shown
in Extended Data Fig. 9d and Methods). We observed that the value of
thisindex was closertoonein AC, revealing higher feature separability
compared to CAl throughout the retrieval trial duration (Fig. 3i; also
confirmed by representing normalized mean responses of feature trials
in an n-dimensional space, Extended Data Fig. 9e). Thus, AC contains
robust population-level codes for features that are positioned to inter-
act with contextual codes in CA1during memory retrieval.

To determine whether these feature-coding neurons, rather than
any equally sized population of neurons in AC, are used to drive
feature-based recall, we developed an approach to target the expres-
sion of the inhibitory opsin st-GtACR preferentially in feature-coding
neurons in AC. In brief, we injected a cre-dependent st-GtACR bilat-
erally in AC of TRAP2 mice®, and provided tamoxifen during feature
presentations (retrieval day 1) to express st-GtACR preferentially in
feature-coding neurons (Fig. 3j). We found that optical silencing of these
neurons (approximately 20% of all neurons; Fig. 3j and Extended Data
Fig. 9f) was sufficient to drive near complete deficit in feature-based
recall (Fig. 3k, left), which is rescued by providing no optical inhibi-
tionthe following day (Fig. 3k, left; F(1,25) = 64.39, P < 0.0001; two-way
ANOVA between R6 and R7). By contrast, expression of the inhibitory
opsininarandom population of neurons of a similar size (also around
20%; Extended Data Fig. 9f) and silencing during retrieval resulted inno
significant deficit in feature-based recall (Fig. 3k, right; F(1,20) = 0.14;
P>0.05; Two-way ANOVA). Together, these results demonstrate astrong
causal role for AC feature-coding neurons in driving memory recall.

Dynamic AC-CAlreorganization enablesrecall

Tounderstand how feature codesin AC emerge and interact with conjunc-
tive codes in hippocampus duringmemory retrieval, we developed a dual
GRIN lens preparation to perform simultaneous two-photonimagingin
AC and CAl, enabled by the 2p random access mesoscope® (Fig. 4a,b,
Extended DataFig.10a,b and Supplementary Video 1; Methods). Toreli-
ably track neural sourcesinboth regions across training and retrieval, we
reduced the multi-modal contextual association task from 6 days (3 days
trainingand 3 daysretrieval) to 2 days (1day trainingand1day retrieval).
Furthermore, increasing timein each context (60 s) enabled us to track the
emergence of context and feature selectivity in each region and resolve
the temporal dynamics of their long-range interactions (Extended Data
Fig.10c-e; Methods).We observed that during training, the recruitment
of CAl context ensembles significantly preceded the recruitment of AC
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ensembles, which was reversed during retrieval (Fig. 4c, P< 0.0001 for
training, P< 0.01for retrieval, K-S two-tail test; Extended Data Fig. 10f).
Theseresultsare consistent withadynamicreorganization betweentrain-
ingandretrievalwhere CAlsupportstheemergenceof ACfeaturerepresen-
tations during training (Extended Data Fig. 8m-o), which arein turnused
torecruit CAl conjunctive representations during recall (Figs.2gand 3j,k
and Extended DataFig.7d, e).

To further characterize this bidirectional communication between
AC feature and CAl conjunctive codes, we performed correlation analy-
sesand, asexpected, found significant correlations between the activity
offeature ensemblesin AC with the cognate context ensemblesin CAl
(Fig.4d; Methods). Of note, although AC-CAl correlationsin the neutral
context weresignificantly above chance, these correlations were even
higher for the aversive context (Fig. 4d, g < 0.05, Friedman test), sug-
gesting that the AC-CAlinteractions are enhanced by saliency. Indeed,
most highly correlated cells across the two brain regions (Methods)
consisted largely of aversive responsive neurons and had significantly
more synchronous activity with aversive feature ensemblesin AC and
aversive context ensembles in CAl, underscoring in an unbiased way
the tighter coupling of neural activity, in the aversive compared with
the neutral context (Fig. 4e).

Finally, we studied how feature- and context-selective neurons
emerge in AC and CAl throughout training. We found that neurons
that were initially shock-responsive on the first two trials became
context-responsive on the last two trialsinboth AC and CA1 (Fig. 4f,g,
n=3mice, approximately 60% of CAl and approximately 30% of AC
shock neurons became context neurons; Extended Data Fig.10g). These
dataindicate that neuronsinitially encoding the unconditioned stimu-
lus slowly acquire selectivity to the conditioned stimulus, thus shaping
aconjunctive representation of context in hippocampus. Such salient
representations are further supported by bidirectional hippocampal-
neocortical interactions, through which hippocampusinstructs salient
feature representations in cortex during training, and cortex performs
targeted recruitment of hippocampal representations during retrieval.

Discussion

Here we uncover a fundamental component of parallel memory pro-
cessing inthe brain where conjunctive representations of an experience
are stored in the hippocampus CAl, whereas the constituent features
arerepresentedin the anterior cingulate region of the prefrontal cor-
tex. We thus provide direct neurophysiological support to theoretical
frameworks that have been developed from studies on humans® %
regarding prefrontal contributions to memory recall. We also note that
feature-codingin prefrontal cortex may enable organisms to recognize
details in order to subsequently assign and recall associated contex-
tual information® as well as identify distinct features of overlapping
memory representations for high-fidelity retrieval®**°*, or to extract

patterns and create a semantic framework of past experiences****,
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Fig.4|Dynamicinteractionsbetweenfeature representationsin ACand
contextual representationsin CAlrepresentationfacilitate memoryrecall.
a,b,Side (left) and top view (right, adapted from Allen Institute Repository: 3D
Brain Explorer beta (https://connectivity.brain-map.org/3d-viewer?v=1)) of
GRINlensimplantationtoaccess CAland AC simultaneously (a), with
z-projectionimages (mean over time) from one mouse (b). Scale bar, 160 pm.

¢, Left, proportion of context-selective neurons responding to context onset
duringtraining as afunction of latency for arepresentative mouse, as
determined by cumulative distribution function. P<0.0001, Kolmogorov-
Smirnov test. Middle, as left, but for retrieval, with feature ensembles in AC and
contextensemblesin CA1(P=0.001).Right, difference of mean onset time of AC
and CAlduringtraining and retrieval determined by fittingonset curveto an
exponential function.n=3 mice. Dataare mean s.d.d, Interaction between AC
feature and CAlcontextensembles (left), with dF/F correlation between feature
ensemblesin AC (all feature types grouped) with context ensemblesin CA1

all of which are thought to be mediated by the neocortex. Moreover,
dynamic access to separately stored features provides capabilities to
update, modify or reassign weights of salient features without affect-
ing the original representation in the hippocampus. Thus, a model
that aligns our findings with the literature is that parallel processing
enables neocortex to parse experiences into details thatare encodedin
ahigh-dimensional manifold®3**4¢which has targeted access to hip-
pocampal conjunctive representations encoded in alow-dimensional
network to enable feature recognition and high-fidelity recall”*.
Furthermore, using simultaneous neural circuitinhibitionandimaging
approaches, we find that prefrontal, but not lateral entorhinal, inputs
provide targeted access to context representations in hippocampus and
are required to drive memory retrieval. Notably, our observed lack of

across neutral (blue) and aversive (black) feature trials (right). Dataare

mean +s.e.m;n=3mice,Sretrieval sessions, 3 features each; Kruskal-Wallis
one-way ANOVA with Dunn’s post hoc test. e, Highly connected AC-CAlneurons
(long-range partners, left) and their correlations with feature neuronsin AC (all
featuretypes grouped, P=0.055) and context neuronsin CAl.n=3mice,5
sessions; **P=0.009, Student’s paired t-test (boxes show mean and quartile).

f, Left, averageactivity of AC shock-responsive neuronsontrialland trial 5fora
representative mouse. Shaded areaindicatess.e.m.,black dotted line shows
contextonsetand red dotted line shows first shock delivery. Middle, mean dF/F
during first10 sin context, normalized toITI, across all mice.n=3 mice; dataare
mean *s.e.m. Right, proportion of active shock-responsive neurons as a
functionoftimein contextintrialsland5.n=3mice.g, Asf, but for CAl.

h, Schematic of aworking modelin which LECinputsto CAlare adedicated
storage circuitand ACCinputsto CAlare adedicated retrieval circuit. Details of
statistical analyses are showninSupplementary Table 1.

discernable feature representationsin CAlhippocampus does not contra-
dict previous reports of unimodal representationsin CAl (refs.>'*7), but
rather suggests that those unimodal cues were probably considered sepa-
rate contexts. Additionally, giventhe prominent contextual inputs thatare
thought to be conveyed via lateral entorhinal cortex?”, we postulate that
information coding may already be conjunctive by the time it reachesthe
entorhinal circuit?®*#%* and/or that the entorhinal-hippocampal system
may primarily function during memory storage, whereas the prefron-
tal-hippocampal system may be a dedicated retrieval circuit (Fig. 4h).
Finally, simultaneous imaging of prefrontal cortex and hippocam-
pus enabled us to address questions related to the co-emergence and
interplay of memory representations across these regions throughout
training and retrieval. We found a dynamic reorganization of temporal
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structure across the hippocampal-neocortical network, with hippocam-
pusleading cortical representations during trainingbutamarked rever-
sal duringretrieval where top-down cortical inputs target and mobilize
contextual hippocampal representations for memory recall. This bidi-
rectional communication is enhanced by the saliency of the memory,
whichis probably relevant for understanding how weaker and stronger
memories are represented across the brain and how this may be altered,
particularly in the prefrontal-hippocampal network. In future studies,
itwillbeimportant to determine the long-termstability of the observed
feature and conjunctive codes*® 3, whether the prefrontal-hippocampal
retrieval circuit has time-limited roles, and whether molecular signatures
predictfunctional heterogeneity that define the varying levels of commit-
mentindividual neurons havein an otherwise drifting population code.
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Methods

Mice

All mice were purchased from The Jackson Laboratory. Six- to eight-
week-old wild-type C57BlI6/) male mice were group housed three to
five in a cage with ad libitum food and water, unless mice were water
restricted for behavioural assays. All procedures were donein accord-
ance with guidelines approved by the Institutional Animal Care and
Use Committees (protocol no.19112H) at The Rockefeller University.
Number of mice used for each experiment was determined based on
expected variance and effect size from previous studies and no statisti-
cal method was used to predetermine sample size.

Surgeries
Viralinjections. All surgical procedures and viral injections were car-
ried outunder protocols approved by the Rockefeller University IACUC.
Mice were anaesthetized with1-2% isoflurane and placed in the stereo-
tactic apparatus (Kopf) under a heating pad. Paralube vet ointment
was applied on the eyes to prevent drying. Virus was injected using
a34-35 Gbevelled needle in a 10-pl NanoFil Sub-Microliter Injection
syringe (World Precision Instruments) controlled by aninjection pump
(Harvard Apparatus). All viruses were injected at the rate 75 nl min™
(unless mentioned otherwise), and the needle was removed 10 mins
after the injection was done to prevent backflow of the virus.
Forimaging, 500-700 nl of AAV1(or AAV9)-hSyn-GCaMPé6f (Addgene,
catalogue (cat.) no.100837-AAV1 (or AAV9); titre: ~1.5 x 10" viral genome
copies (vg) ml™) wasinjected in AC or CAl For inhibition-imaging exper-
iments, ~300-400 plof asoma-targeted AAV1-stGtACR2 under a Cam-
KIl promoter (Addgene, cat. no.105669-AAV1; titre: -8 x 10”2 vg ml™)
was injected unilaterally in AC or LEC. For optogenetic experiments,
stGtACR2 was injected bilaterally in AC or LEC with the same amount
and titre, with CamKII-mCherry in control cohorts (Addgene cat. no.
114469-AAV1; titre: -9 x 10 vg ml™). For chemogenetic inhibition,
G;-coupled DREADD AAV9-hSyn-hM4D(G;)-mCherry (Addgene, cat.
no.50475-AAV9; titre:: -1 x 10" vg ml™) virus wasinjected in CA1(A/P:
-1.5mm, M/L: £1.5 mm, D/V: -1.6 mm) bilaterally.

Anatomical tracings. For retrograde tracing, 6- to 7-week-old mice
were injected with 400 nl of AAVrg-CAG-tdT (Addgene, cat. no.
59462-AAVrg; titre: -1 x 10" vg ml™) at 50 nl min™ to target dorsal
hippocampus with oneinjectionin CAl: A/P:-1.5mm, M/L: 1.5 mm,
D/V:-1.6 mm, and the other in CA3: A/P: -1.5, M/L: +/-1.9mm, D/V:
-1.9mm. Mice were housed for four weeks prior to perfusion and
sectioning for histology. Given the enhanced sensitivity of retrograde
tracers (to existing anterograde tracers), cre/flp is not necessary
to easily visualize retrograde label in AC and LEC. When retroAAV-
cre was used, however pre-synaptic labelling was even stronger
(Supplementary Note 1).

For CAlretrograde tracing, 300 nl of AAVrg-hSyn-cre (Addgene,
cat. no.105553-AAVrg; titre: -7 x 10 vg ml™) was injected in CAl and
400 nl of AAV1-CAG-Flex-eGFP (Addgene cat. no. 51502-AAV1; titre:
~1x10" vg mI™) was injected in AC. For retrograde tracing from
emxl-creand vglut-cremouselines, 350 nl of AAVrg-Flex-tdT (Addgene
cat.no.28306-AAVrg; titre: -1 x 10" vg ml™) was injected into CAL.

For anterograde tracing, 6- to 7-week-old mice were injected with
300 nlof AAVI-hSyn-Cre (Addgene, cat.no.105553-AAV1) in AC or LEC
and350-400 nl of AAV1-CAG-Flex-eGFP (Addgene cat.no.515020-AAV1;
titre: ~1.5 x 10 vg ml™) in CA1, and mice were housed for 4 weeks prior
to perfusion and sectioning for histology. Because AAV1 (ref.>*) can
cross the synapse, this approach is intended to visualize postsynap-
tic neurons in CAl. However, because cre traffics strongly to neuron
terminals but synaptic transfer is comparably lower, we observe vari-
ability in the extent of eGFP expressionin presynaptic terminals versus
postsynaptic cell bodies. Thus, we recommend optimizing virus titres
and volume based on which visualizationis required.

For dual anterograde tracing experiments, 300 nl of AAV1-hSyn-Cre
(Addgene, cat. no.105553-AAV1; titre: ~1.5-2x10" vg ml) was injected
in LEC, and 300 nl of AAV1-Efla-flp (cat. no. 55637-AAV1; titre:
~1x10" vg ml™) in AC, and 700nL of 1:1 mixture of AAV1-CAG-Flex-eGFP
(Addgene, cat. no. 515020-AAV1; titre: ~1x 102 vg ml™?) and
AAV1-Efla-fDIO-mCherry (Addgene, cat. no. 114471-AAV1; titre:
~1.6 x 10" vg mI™) in CAL. All injections were performed at 50 nl min™.
The experiment was also doneinreverse with AAV1-hSyn-Cre injected
in AC and AAV1-Efla-flp in LEC. Of note, using Cre/Flp substantially
increased robustness and reduced technical variability for mapping
these direct projections to CAL.

To target neurons that receive convergent inputs from AC and LEC,
weinjected 700 nl of AAV8-hSyn-ConFon-eYFP (titre: -2 x 10*) in CAl,
in conjunction with anterograde Cre and Flp systems in AC and LEC,
respectively. Coordinates used were; CA1(A/P:—1.5mm, M/L: £1.5mm,
D/V:-1.6 mm); AC (A/P: +1.0 mm, M/L: +0.35 mm, D/V:-1.4 mm); LEC
(A/P: =4 mm, M/L: £3.75mm, D/V: -4.2 mm).

Implanting coverslips, GRIN lenses and fibreoptic cannulas. After
confirming that mice were anaesthetized (absence of reflex responses
to toe-pinch), dexamethasone (0.2 mg kg™) was administered intra-
muscularly using al-mlsyringe. Anaesthesia was maintained at1.5-2%
isoflurane throughout the procedure. A long incision (covering the
anteroposterior extent) was made and the skin overlying the skull was
removed. The skull was cleared and dried with 3% hydrogen peroxide
and scalpel scrapings.

Forimplanting coverslips, a 5-mm craniotomy was performed witha
pneumatic dental drill until a very thin layer of bone was left. This can
be determined if by pushing gently on the centre of the craniotomy,
the bone movesinwards. With afew drops of saline inthe area, the skull
was lifted with very thin forceps, keeping the dura intact. Bleeding
was minimized with use of an absorbable haemostatic agent. We then
positioned the circular coverslip (Harvard Apparatus CS-5R) of 5 mm
(thickness 1 mm) over the exposed brain and sealed the remaining
gap between the bone and the glass with tissue adhesive (Vetbond).
A customtitanium headplate was then placed surrounding the coverslip
and glued to the skull using C&B Metabond (Parkell). A3D-printed well
was glued to the headplate using Metabond and Gorilla Glue to serve
as awell for holding water during two-photon imaging with a water
immersion objective. We ensured a field of view primarily consisting
of cingulate cortex, rather than the nearby M2 motor cortex, by target-
ing afield of view as close to the midline as possible, confirming that
hippocampal projecting neurons were contained within our imaging
field of view, and that motor related signals from these neurons were
minimal and only slightly increased as we moved towards M2 and the
edge of our field of view (Extended Data Fig. 8e-h).

For GRIN lens implants, a metal jacket of 1.1 mm diameter was pre-
pared from a hollow metal tube (McMaster tubing, cat.no. 8987K54) and
optically glued (using the Norland Optical Adhesive NOA61, Thorlabs
and cured with UV light) to the1 mm diameter GRIN lens (3.4 mm height,
working distance = 0.25 mm, cat. no. G2P10 Thorlabs) to protect the
areaofthelensabove the skull. A craniotomy of ~-1.1 mm was performed
and a part of cortex was suctioned out with continuous flow of PBS and
low-pressure vacuum. The durabeneath the craniotomy was removed
using vacuum and the tip of a28 G x 1.2 in. insulin syringe (Covidien).
A sterile 0.5-mm burr (Fine Science Tools) attached to a stereotaxic
cannula holder (Doric) was slowly inserted to the injection site and
then pulled out of the brain twice to clear apathway for the GRIN during
implantation. The GRIN lens was then lowered into the brain slowly
(atthe rate of 1 mm min™)and placed 0.2 mm above the site of injection
or recording. The area surrounding the lens (metal jacket) and the
skull was sealed with optic glue, and covered further with Metabond.
For simultaneous AC/CAlimaging experiments, the headplate was
affixed following the small craniotomies. The headplate was placed
onaforkedhead-bar held by apostholder onabread board (Thorlabs)
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to simulate position of head fixation during behaviour. This ensured
that the two GRIN lenses were inserted at the same angle and depth,
parallel to the headplate and imaging objective. We again attempted
to maximize cingulate neurons in our field of view, instead of nearby
M2 motor neurons, by targeting the AC GRIN lens as flush with the
midline as possible, and confirming that motor related signals from
ourrecorded neurons were minimal and increased only slight towards
the lateral end of our field of view (Extended Data Fig. 10b).

For inhibition-imaging experiments, low-profile cannulas were
implantedin ACand LECipsilaterally to the recorded CAlregion, along
with GRINimplantsin CAl. Mono fibreoptic cannulas with low profile
and NA of 0.66 (Doric, cat.no. AC: MFC 400/430-0.66_1.2mm_LPB90(P)
and LEC: MFC 400/430-0.66_3.8mm_LPB90(P) C45) allowed simulta-
neousimaging of CAlviaal6x/0.8 objective without steric hindrance.
The headplate was affixed to the skull first, followed by implantation
ofthe GRINlens and finally the low-profile cannulas angled away from
the centre of the head. A well made of black Ortho-Jet dental cement
was built around the implants using adjustable precision applicator
brushes (Parkell). For optogenetics experiments, a dual fibreoptic
cannula was implanted in AC with 430um outer diameter tip in AC
bilaterally with NA of 0.66 o fibreoptic cannulas were used to inhibit
CAl (Doric, MFC_400/430-0.66_1.4mm_MF1.25 DFL) and LEC (Doric,
MFC_400/430-0.66_4.1mm_ZF1.25_DFL) bilaterally. All cannulas were
placed 0.2 mm dorsal to the site of injection, fixed to the skull with
optic glue and Metabond.

After surgery, animals were kept on the heating pad for recovery and
given Meloxicam tablets for one day post-surgery.

Histology and immunohistochemistry

Mice were transcardially perfused with cold PBS and 4% paraformal-
dehydein 0.1 M phosphate buffer (PB), then brains were post-fixed by
immersion for-24 hinthe perfusate solution followed by 30% sucrose
in 0.1 M PB at 4 °C. Extracted brains were sliced into 40-pum coronal
sections using a freezing microtome (Leica SM2010R) and stored in
PBS. Free-floating sections were stained with DAPI (1:1,000 in PBST),
and mounted on slides with ProLong Diamond Antifade Mountant
(Invitrogen). Images were acquired on a Nikon Inverted Microscope
(Nikon Eclipse Ti).

Forimmunostaining, fixed brain sections were blocked in solution of
3% normal donkey serum, 5% BSA, and 0.2% Triton X-100 in 1x PBS for
~3 hand incubated with primary antibody overnight at 4 °C. Sections
were washed 3 times in PBS and incubated in appropriate secondary
antibody for -2.5 h. Following three 10 min washes in PBS, sections
were stained with DAPI (1:1,000 in PBST) and mounted using ProLong
Diamond Antifade Mountant (Invitrogen). Images were acquired at
10x and 20x magnification with a Nikon Inverted Microscope (Nikon
Eclipse Ti) and ZEISS LSM 780 confocal. Primary antibodies include
rabbit monoclonal anti-FOS (Cell Signaling Technology, cat.no.2250),
rabbit polyclonal anti-cre recombinase (Abcam, cat.n0.190177), CaMKII
alpha/beta/delta rabbit polyclonal antibody (Invitrogen, cat. no. PA5-
38239). Secondary antibodies include Alexa Fluor 647-conjugated
AffiniPure donkey anti-rabbit IgG (Jackson ImmunoResearch, cat. no.
711-605-152, 1:250 dilution), Alexa Fluor 488 donkey anti-rabbit IgG
(H+L) Highly Cross-Adsorbed secondary antibody (Thermo Fisher
Scientific, cat. no. A-21206). Slices were then mounted and imaged on
Nikon Inverted Microscope (Nikon Eclipse Ti).

Virtual reality behaviour

We developed a virtual reality environment, adapted from previous
approaches?%%, consisting of a styrofoam ball (150 mm diameter)
that is axially fixed on a10-mm rod (Thorlabs) resting on post hold-
ers, allowing motion in the forward and backward directions. Mice
were head-restrained using a headplate mount above the centre of the
ball***”. Virtual environments were designed in VIRMEn (Virtual Reality
MATLAB Engine, 2016 release) and projected onto a projector screen

fabric stretched overaclearacrylic frame curved to cover -200° of the
mouse’s field of view. Custom scripts in VIRMEn were used to interface
the animal’s behaviour with the virtual environment: thatis, incoming
TTL pulses from a lickometer and an optical mouse recorded animal
licking and position respectively, which were used to send outgoing
TTL pulses to deliver quiet solenoid-gated water/sucrose rewards, or
aversive airpuffs/electric shocks respectively. All sensory stimuliwere
provided using a NIDAQ (NI Data Acquisition Software USB 6000, NI
782602-01) and Arduino Uno which interacted with VIRMEn MATLAB to
send outgoing TTL pulses to control delivery of the various multi-modal
cues, of which the olfactory and tactile cues were additionally gated
by 12 V quiet solenoid valves (cat. no. 2074300; The Lee Company).
For auditory stimuli, a pure tone of 5 kHz, 9 kHz or 13 kHz for reward,
neutral and aversive contexts respectively, was provided through an
Arduino speaker placed below the virtual environment; Olfactory
stimuliwere provided with asystem of manifolds that directed airflow
towards the mouse’s snout. Three monomolecular odours were used,
alpha-pinene (CAS no.: 7785-70-8), isoamyl acetate (CAS no.: 123-92-2)
and methyl butyrate (CAS no.: 623-42-7; Sigma Aldrich) for each of
the three different contexts. Tactile stimuli consisted of controlled
directional airflow (10 psi, Primefit R1401G Mini Air Regulator) behind
the mouse hindpaws.

For the task, mice were water restricted (maintaining > 80% of the
body weight) and habituated to handling, head fixation and free water
licking (~0.5 pl per 10 licks; one 20 min session per day) for at least
oneweek before the start of the task. During pre-exposure (day 1) mice
wererepeatedly exposed, at random, to each of the three contexts (20 s
each), withITlof 5 s. During training (days 2-4), mice again repeatedly
experience each of the three contextsatrandom (20 s each, ensuring
~35 presentations of each context/day), together with ITIs, but this
time with paired reinforcements such that the reward context was
paired with sucrose delivery, the neutral context was paired with water
delivery, and the aversive context was paired with aversive airpuffs.
In each context, the visual cue (V) was always on, but the auditory (A),
olfactory (0O) and tactile (T) cues appeared intermittently to enable
binding of contextual cues, where each cue was provided for a dura-
tion of 3 s and appeared a total of three times during a context span-
ning 20 s.Inthe reward and neutral contexts, sucrose and water were
delivered continuously, whereasin the aversive context airpuff was not
presented continuously (to avoid habituation) but rather delivered at
three distinct times. These trials were interspersed with probe trials
(20%) where contexts were presented without reinforcement. Lick
rate profiles (as a function of time) were calculated by averaging the
lick rates across a rolling window of 1 s prior of time point to 2 s after
time point. Integrals of these curves, averaged across trials, provided
total licks per context across the session. Learning was assessed by
successful modulation of lick rates on probe trials in the absence of
reinforcement, i.e., enhanced licking in reward context, suppressed
licking in aversive context, and no change in neutral context, with sig-
nificant differences assessed by two-way ANOVA with Sidak’s multiple-
comparison procedure.

Once micelearned the task (significant differenceinlick rate between
reward and aversive context P < 0.05), mice move to retrieval. Dur-
ing retrieval (typically days 5-7), mice were presented with 10 s trials,
together with 5sITlIs, consisting of full (AVOT) or partial features (AT,
OT, AOT) of the original multi-modalin the absence of reinforcements
(water delivery only). Full context reinforced trials were interspersed
periodically (-15% of trials) to prevent extinction. We limited the types
offeatures presented toincrease number of trials and statistical power
of features tested. Again, successful retrieval was assessed by appro-
priate modulation of lick rates in the absence of reinforcement, that
is, enhanced licking in the reward context and suppressed licking in
the aversive context, with significant differences between reward and
aversive features individually assessed by a nonparametric, Mann-
Whitney U-test.



Modification of behaviour during mesoscope imaging

For simultaneousimaging of AC and CAl, we modified the behaviour to
observesaliency and neural dynamics onlonger time scales. Thus, we
presented only neutral and aversive contexts and extended the duration
of each context to 60 s.Scattered light from the projector screen picked
up by the mesoscope photomultiplier tubes (which appeared unavoid-
ableduetothesize of the objective) limited us to turn off all visual cues,
and only use auditory, olfactory and tactile cues. During training (one
day only), mice were presented with Sinstances of neutral and aversive
contexts of 60 s each, with an ITl of 30 s. Water was delivered in both
contexts, but additionally, an electric tail shock (0.5 mA, 0.5 ms) was
providedinthe aversive context using the Coulbourn Precision Animal
Shocker system (Harvard Apparatus; shock delivered by alligator clips
attached to self-adhering conducting electrodes stuck onto the tail).
Intheaversive context (60 s), electric shocks were delivered twice, first
at10 s from context onset, and the second at arandom time between
20-50 sfrom context onset. During retrieval, each combination of par-
tial cue was presented once (AOT, OT and AT) for 60 s each, withal15sITI.

Two-photonimaging during behaviour

Mice were imaged throughout training (days 2-4) and retrieval (days
5-7)in~30 min sessions/day. Volumetricimaging was performed using
aresonant galvanometer two-photonimaging system (Bruker), witha
laser (Insight DS+, Spectra Physics) tuned to 920 nm to excite the cal-
ciumindicator, GCaMPéf, through a16x/0.8 waterimmersion objective
(Nikon) interfacing withanimplanted coverslip or Gradient Refractive
Index (GRIN) lens through a few drops of distilled water. Fluorescence
was detected through GaAs photomultiplier tubes using the Prairie
View 5.4 acquisition software. Black dental cement was used to build a
well around the implant to minimize light entry into the objective from
the projector. High-speed z-stacks were collected inthe green channel
(using a 520/44 bandpass filter, Semrock) at 512 x 512 pixels covering
eachx-yplaneof 800 x 800 mm over adepth of ~150 pm (30 pmapart)
by coupling the 30 Hz rapid resonant scanning (x-y) to a z-piezo to
achieve -3.1 Hz per volume. Average beam power measured at the objec-
tive during imaging sessions was between 20-40 mW. An incoming
TTL pulse from ViRMEn at the start of behaviour enabled time-locking
of behavioural epochs to imaging frames with millisecond precision.

Simultaneous two-photonimaging of ACand CAl during
behaviour

Mice were imaged throughout training and retrieval days (-15 min
per session). Dual-region volumetric imaging was performed using
al2 kHz resonant galvanometer multiphoton mesoscope system (2p
Random Access Mesoscope) with a remote focusing system for fast
axial control over ~1 mm range. A Tiberius Ti:Saphire femtosecond
laser (Thorlabs) was used to excite the calcium indicator GCaMP6f
and fluorescence was detected using GaAsP photomultiplier tubes.
A water immersion objective with a5 mm aperture (0.6 NA), coupled
totwo separate GRIN lenses was used to accessboth ACand CAlinthe
same field of view. Remote focusing enabled rapid switching between
the two axial planes corresponding to cortical (AC) and subcortical
(CAI) regions simultaneously. Volumetric images of AC and CAl were
collected over three optical planes (xy: 600 x 600um), separated 60 pm
apartinz, achievingavolume rate of -5.1 Hz.

Optogenetics

Mice wereinjected with AAV1-CaMKII-st-GTACR2-mCherry and CaMKII-
mCherry (control cohort) bilaterallyin ACor LEC, and implanted with
dual fibreoptic cannulas with guiding sockets. The cannulas (400 pm
diameter, 0.66 NA) were placed -0.2 mm dorsal to the injection site.
After recovery over 1-2 weeks, mice were water restricted, habituated
to the virtual environment, and then trained on the task. During the
retrieval phase, half of the trials in each trial type (AVOT, AOT, OT, AT)

were inhibited (light-on), while the other half were controls (light-off).
Adualfibreoptic patch-cord (DFP_400/430/2000-0.57_2m_GS0.7- 2FC,
Doric) wasusedto deliver 470 nm light from alaser source (DPSS Blue
473 nm Laser cat.no. MBL-11I-473, Opto Engine LLC), between 4-5 mW
atthetip source. Normalized lick differences between reward and aver-
sive feature presentations was used as a measure of discrimination
between reward and aversive context, referred to as the discrimina-
tionindex (DI):

No. of licks in reward feature A

pi=—No. of licks in aversive feature A
No. of licks in reward feature A

+No. of licks in aversive feature A

Totallicks fromall retrieval sessions were pooled to calculate the DI.
Only mice that used features to discriminate between contexts in
light-off trials (that is, DI > 0.1) were included in the analysis compar-
ing light-on and light-off trials. The same cut-off was used for both
st-GtACR2 and mCherry cohorts. Two-way ANOVA with Sidak’s post
hoc test was used to identify significant differences between DI values
between light-off and light-on sessions and across different feature
presentations.

For CAlinhibition, controland opsin cohorts were inhibited through-
outreinforced sessions during training (T1-T3) across all contexts, and
their behaviour was assessed as DI between reward and aversive probe
trials on last day of training (T3).

Paired optogeneticinhibition and two-photonimaging
AAV1-CamKII-GtACR was injected in AC/LEC ipsilaterally to injection
of AAV-hSyn-GCaMPé6fin CAl. After one week, alow-profile fibreoptic
cannula was implanted in AC or LEC, together with a1 mm diameter
GRIN lens over CAl. Importantly, the low-profile cannulas (Doric;
MFC_400/430-0.66_1.2mm_LPB90(P) C4S5 for AC; MFC_400/430-
0.66_3.9mm_LPB90(P)_C45for LEC) extended outward ata90° angle
and thus did not have steric hindrance with the objective atop the GRIN
lens. Mice remained in their home cages for at least one month, to allow
forrecovery and sufficient viral expression, before habituationto the
virtual environment. Mice proceeded through training as described
above. During retrieval, optogenetic inhibition of AC/LEC (on half of
all trials) was paired with two-photon imaging of CAL. Inhibition of
AC/LEC was achieved by activating the inhibitory opsin GtACR with
470 nm light (viaa Mono-fiber optic patch-cord MFP_400/430/1100-
0.57_2m_FC-ZF1.25; Doric) with a maximum power of ~-1-1.5 mW at the
fibre tip to minimize unintended activation (and therefore increases
inbaseline fluorescence) of GCaMP, which would underestimate true
GCaMP transients. We also confirmed that during two-photonimag-
ing, at 920 nm, with light powers less than 40 mW at the objective,
there was minimal unintended activation of the opsin, as evidenced by
similar spontaneous and task-relevant activity patternsin the absence
and presence of the opsin (Extended Data Fig. 6). Cell sources were
extracted as described below (source extraction), however, in many
cases the sources and portions of the resulting time series were manu-
ally verified.

Analysis of paired inhibition and imaging experiments

On inhibition trials, the 470 nm light interfered only minimally with
GCaMP fluorescence activity, thus introducing a small increase in
baseline fluorescence, which was postprocessed after source extrac-
tion. Theincrease in baseline fluorescence during inhibition trials was
uniformacross the entire task, and thus, was corrected by performing
arolling average (-200 frames) baseline correction on the time series
frominhibited trials to match the baseline of control trials for each
neuron. Theresponses were then z-scored in both control and inhibited
trials separately and significant transients (as described below) were
identified in both conditions.
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CAl neurons that were significantly inhibited by AC/LEC inhibi-
tion were defined as neurons whose mean dF activity during con-
trol trials exceeded the mean dF activity on inhibited trials by 1s.d.
Context-selective neurons were detected from control trials (as
described below) and for each condition (ACinhibition, LEC inhibition),

we calculated the percentage of inhibited neurons that were also
context-selective. To calculate chance probability that a context-
selective neuron will be classified as inhibited, we randomly subsam-
pled thesame number of neuronsasintheinhibited ensemble, froma
givensession, and calculated the fraction of context-selective neurons
in this randomly picked subsample. This process was bootstrapped
1,000x% and the mean value was used as the probability by which a
context-selective neuron will be inhibited by chance, rather than due
to optogeneticinhibition of AC/LEC.

For calculating the relative inhibition of the activity of context-
selective and other non-context-selective neurons®®, separately,
the time series data were binarized, where frames with significant
activity (significant transients) were assigned 1, and all others set to
0. Binarizing the dF/F responses eliminated any effect of increased
baseline and transient saturation emanating from the 470 nm laser
(ifany), by avoiding magnitude comparisons and preserving the tem-
poral structure of changes in GCaMP activity, as the measure of true
response. The fraction of time aneuroninagiven trial/featureis active
was calculated for each neuron in both control and inhibited trials
(by summing the binarized activity). The mean activation time for all
context ensemble neurons in their respective feature presentations
was taken as mean ensemble activity for context neurons. To account
for unequal numbers of context and non-context-selective neurons,
we defined a non-context ensemble with the same number of neurons
as in the context-selective ensemble (non-context-selective neurons
were randomly picked) and the fraction of time active was calculated.
This process was bootstrapped 100x and the mean of the bootstrapped
values was taken as the mean non-context ensemble activity. Relative
inhibition was calculated as the difference of ensemble activity between
controlandinhibited trialsnormalized to the mean ensemble activity
on control trials.

Mean ensemble activity (Control)

—Mean ensemble activity (Inhibited)
Mean ensemble activity (Control)

Relative inhibition=

A two-way ANOVA with Sidak’s post hoc was performed to detect
significant differences between relative inhibition of context and
non-contextensembles, and mean ensemble activity differences across
light-off control and light-on trials.

FOS staining and overlap with AC/LEC anterograde tracing to CAl

AAV1-hSyn-cre was injected unilaterally in AC or LEC and AAV1-CAG-
Flex-eGFP injection was targeted to CAl. After 3 weeks, mice under-
went training and were perfused -1.5 h after completing retrieval. For
immediate early gene FOS staining, fixed brain sections containing
CAlwereblocked in 3% normal donkey serum and 0.3% Triton X-100
in1x PBS for 1 handincubated with rabbit monoclonal anti-FOS (Cell
Signaling Technology, cat.no.2250,1:200 dilution) overnight at 4 °C.
Sections were washed 3 times in PBS and incubated in Alexa Fluor
647-conjugated AffiniPure donkey anti-rabbit IgG (Jackson Immu-
noResearch, cat.no. 711-605-152,1:250 dilution) for 1.5 h, then stained
with DAPIand mounted using ProLong Diamond Antifade Mountant
(Invitrogen) for image collection at 10x and 20x magnification with
Nikon Inverted Microscope (Nikson Eclipse Ti). The percentage of
FOS" neurons in CAl that have overlap with AC and LEC inputs were
calculated from manual cell quantification covering multiple fields
of view per mouse, and quantifying across 4 mice per group. For
each tracing experiment, 8 slices were used (n = 4 mice, 2 slices per
mouse). Foreachanimal, two slices spaced 100-150 um apartinzwere

quantified, where each slice had anxyfield of view spanning the entire
CAl. Each data point in Extended Data Fig. 7e represents one slice.

Selective inhibition of feature-coding neurons

FosTRAP transgenic mouse line TRAP2 (ref. *°) were injected with
AAVS8-DIO-stGtACR2 in AC bilaterally and implanted with dual fibre-
optic cannulas with guiding sockets. The cannulas (400 pm diameter,
0.66 NA) were placed ~0.2 mm dorsal to the injection site. After three
weeks, mice were water restricted and habituated to the task setup for
5days. Onday 4 of habituation, randomly selected mice were injected
with 30 mg kg™ of 4-hydroxy tamoxifen (4OHT), as described previ-
ously®, to trap task irrelevant activated neurons to selectively express
GtACRas controls for the experiments (TRAP habituation neurons). All
mice were then trained on the task and proceeded to the retrieval phase.
After daylofretrieval (R1), mice (excluding the control cohort of TRAP
habituation neurons) were injected with 30 mg kg™ 4OHT to selectively
express GtACR in feature-responsive neurons (TRAP feature-coding
neurons). After 5 days from R1, AC neurons was inhibited throughout
the task across all trial types for both cohorts (R6). A dual fibreoptic
patch-cord (DFP_400/430/2000-0.57_2m_GS0.7-2FC, Doric) was used
todeliver470 nm fromalaser source (DPSS Blue 473 nm Laser cat. no.
MBL-111-473, Opto Engine LLC), between 4-5 mW at the tip source. For
TRAP feature-coding cohort, another day of retrieval was performed
the following day (R7) without any optical inhibition.

CAl chemogeneticinhibition and ACimaging

To chemogenetically inhibit CA1 during training, a Gi coupled DRE-
ADD (AAV9-hSyn- hM4D(Gi)-mCherry) virus was injected in CAl
(AAV9-hSyn-mCherry for controls) bilaterally along with injection of
AAV9-hSyn-GCaMPéfinto AC. Craniotomy and coverslip implant was
performed on the mice two weeks after injection. Mice were water
deprived and habituated after two weeks of recovery. 5 mg kg™ clo-
zapine N-oxide dihydrochloride (Tocris; cat. no. 6329) was delivered
intraperitoneally to both control (mCherry) and inhibited (hM4DGi)
cohorts throughout training days 1-3. Retrieval was performed the
following day. Mice were imaged on training day 3 and retrieval day 1.

Image processing and analysis

Source extraction. Two-photonimages were motion-corrected using
anon-rigid motion correction procedure using the NoRMCorre algo-
rithm®. NORMCorre splits the field the of view into overlapping spatial
patches which undergoes rigid translation against a template that is
continually updated. After registration, we implement a well-validated
and widely used non-negative constrained matrix factorization-based
algorithm, CNMF, to extract neural sources and their corresponding
time series activity. Cell sources were well separated and manually as-
sessed for any artefacts. Calcium signals were registered across days
using non-rigid registration of spatial footprints using CellReg®. Cal-
ciumimaging datafor dual-regionimaging was acquired by Scanlmage
2020 software and subsequently processed using the Suite2p toolbox®.
Motion correction, ROl detection and neuropil correction were per-
formed as described.

Statistical analysis of calcium responses. To identify statistically sig-
nificant neural responses, we used an approach described previously?,
where negative going deflectionsin the dF/Fresponses are assumed to
be duetomotion-related artefacts and are used to estimate the fraction
of positive transients that are artefactual. To do so, the number of posi-
tive and negative transients exceeding 20, 30 and 40 over noise, were
calculated, where g was calculated on a per cell basis. The ratio of the
number of negative to positive transients was calculated for different
othresholds and for different transient durations, providing a false
positive rate for each condition. We thus defined a significant transient
as any transient rising above 2o over noise for at least 2 frames, which
resulted inan FPR < 5%.



Identification of context- and feature-responsive and -selective
neurons. We used a probabilistic method to identify context- and
feature-responsive neurons, both during training and retrieval.
A neuron was defined as being active within a trial if its dF/F response
in that trial exceeded the average response in the ITIs by 1s.d. We cal-
culated that aneuron can be active within any given trial 40% of times
simplyby chance, thatis, by randomly selecting intervals fromthe time
series that match the time of asingle trial, with a false positive rate <5%
(Extended DataFigs. 2, 8). Thus, a context-responsive neuron (during
training) or feature-responsive neuron (during retrieval) was defined as
any neuron that was active in more than 40% of trials of that trial type.
Additionally, during training, context-selective neurons were defined
as neurons that had greater mean activity in all trials of one context
compared with all trials of the other context at P < 0.05 by ¢-test with
multiple comparison. Duringretrieval, feature-selective neurons were
defined as neurons that had greater mean activity in one feature over
all other features at P < 0.05 by one-way ANOVA.

Population trajectories. To visualize population trajectories, we began
byrepresenting the populationresponse asan N x Tmatrix ¥ (one row
for each of N neurons, one column for each of T time points, N« 7).
Entries in the matrix Y consisted of the raw activity of each neuron
minus its mean over time. The columns of this matrix can be thought
of asthe successive coordinates of the trajectory of populationactivity
inan N-dimensional state space, where the origin corresponds to the
mean activity. To visualize these trajectories, we used singular value
decomposition (SVD) (MATLAB svd) to find the 3D subspace that cap-
tures the maximum variance in the data:

Y=USV"

where the superscript T denotes the matrix transpose. Asis standard, U
isan N x Northonormal matrix whose rows indicate how each neuron’s
response isamixture of the principal components, Visa T x Torthonor-
mal matrix whose first Nrows indicate the time course of each principal
component (PC), and Sis an N x T matrix that is nonzero only on the
diagonal of its first N columns. The entries on the diagonal of Sare in
descending order and their squares give the variance explained by each
PC. The portion of the activity explained by the first k PC’s is given by
Y,=US, V', where S, is the matrix S with only the first k nonzero values
retained. To project Y, onto the first k (here, k= 3) principal axes, that
is, the 3D subspace that contains the largest amount of the variance, we
computed X=U"Y, = U'US, V" =S,V (the last equality follows because U
isorthonormal). The first three rows of X, as plotted in Fig. 1h, are the
population trajectory in that subspace.

Decoding using a SVM. To determine the extent to which population
activity coding for context was feature dependent, we proceeded as
follows. First, for each feature (OT, AT, AOT, AVOT), we trained a SVM
to decode context, based on all trials that contained any of the three
other features, and then asked the SVM to decode the held-out trials
that contained the chosen feature. The SVM decoder was trained sepa-
rately for eachindividual time point, from 2 s prior to the context onset
to10sinto the feature presentation. For asingle time point, the model
was trained on neural responses, considered as N-vectors, acrosstrials
containing any of the three non-held-out features, with the correspond-
ing binary classification of reward or aversive label for those trials.
The model was built using alinear kernel and tenfold cross-validation.
The SVMidentified a hyperplane that maximally separated the neural
responses from the two contexts. This hyperplane was then used to
predict the context in the held-out trials, containing the responses
from the held-out feature. A similar model was also built for the train-
ing phase of the task; this model was trained on reinforced trials and
tested on probe trial responses to decode context.

Separation index using an optimally separating hyperplane. To
understand the separation of population responses across reward
and aversive contexts, and within context feature separation, we
measured contrastive loss, a method to measure distances across
different trial types (features) within and across contexts. First, we
determined the optimally separating hyperplane for decoding con-
text, using an SVM as described above but using all feature trials.
The perpendicular to this hyperplane was then calculated, using
the coefficients beta (Model.Beta in fitcsvm MATLAB), and used to
calculate distances between responses along the axis orthogonal to
the separating hyperplane. Distance across features from the same
context was termed feature separation, whereas, distance across
featuresin opposite contexts (inter-contextual) was termed context
separation. Separation index was defined as the ratio of average of
allinter-contextual distances (features within same context) to the
average of allintra-contextual distances across (features across dif-
ferent context). While the separation hyperplane was able to decode
between reward and aversive responses after trial onset, decoding
during the ITlis at chance (50%) (Extended Data Fig. 9). Thus the
separating hyperplane during the ITlisarandom plane. We used the
mean value of the separation index during the ITI to normalize the
separation indices for each mouse, and then grouped data across
mice and sessions.

Separation index in an N-dimensional state space. The population
response of each trial of the task was represented in an N-dimensional
state space (N =no. of neurons). The mean activity of all neurons
was calculated across all trial types (feature groupings) inan N x f
matrix, where f= 8 was the total number of feature groupings and
contexts (AVOT, AOT, OT and AT, for both reward and aversive con-
text). Euclidean distances in this N-dimensional state space (without
the dimension reduction as described above) was calculated be-
tween positions representing features of the same context to that
of features of opposite context, and the ratio of inter-contextual
distance to intra-contextual distance was defined as the separation
ratio (Extended DataFig. 9).

Generalized context responses. To assess the relative responses of
feature ensembles to other features of the same context (generalized
context responses) and features of opposite context (generalized op-
posite context responses), we calculated the net change inresponse of
feature ensembles to all other featuresin the session. For all trial types,
anetresponse value was calculated as the peak ensemble activity within
the trial (maximum response in any 2 s window in the trial) minus the
meanresponseintheITI2 s prior to the trial onset. These values were
thennormalized to the net response of the feature ensembleinits own
trial type, yielding a net relative response. The generalized context
response was defined as the mean of all net relative responses to tri-
als with features within the same context. The generalized opposite
context response was defined as the mean of net relative responses to
trials with features of the opposite context.

Latency analysis. To quantify the relative timing of context and feature
ensemblesin CAland ACrespectively, the event onset for each neuron
in these ensembles was first calculated. Event onset was defined con-
servatively as the firstinstance within a trial where the dF/F exceeded
the 3o cut-off for two consecutive frames (significant transient detec-
tion as described previously). Neurons that were not activein a given
trial type were discarded from the analysis. For the training phase of
the task, the onsets for context-selective neurons in both CAland AC
were plotted as a cumulative distribution function. For the retrieval
phase, context-selective neuronsin CAland feature-selective neurons
in AC were assessed. A Kolmogorov-Smirnov test was used to detect
significant differences in the distribution of onset times.
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Functionally connected neurons across regions. The functional con-
nectedness of neurons across the two brain regions was assessed by cal-
culating the Pearson correlation for all possible pairs across the regions.
This analysis yielded a matrix of n, x n, correlation coefficients, where
n,isthe number of neuronsinregion A, and n, is number of neuronsin
region B. Functionally connected long-range pairs were identified as
those pairs whose Pearson’s correlation coefficient exceeded 0.3 (since
electrophysiological studies have indicated agreater than 50% chance of
invivofunctional connectedness when GCaMP correlations exceeds 0.3,
thus, aconservative estimate of 0.3 was used as a cut-off)**¢*, Histograms
ofthe number of functionally connected partners for each neuron were
constructed, indicating the degrees distribution of the connectivity
network. Highly connected long-range neurons in both regions were
defined as those neurons for which the number of correlated partners
exceeded the average of the neuronsin the same volume by 1s.d.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Source data are provided with this paper. All other data that supports
this study are available from the corresponding author uponrequest.

Code availability

Source extraction codes used in this study are publicly available.
The custom analysis codes are available from the corresponding author
upon request.
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Extended DataFig. 3| Contextdiscriminationin CAl. a-d, Single neurons

registered across training days 2and 3 (T2-T3) and retrieval days1and 2 (R1-R2).

a, dF/F activity of neuron aligned to start of reward context probe trials (red)
and aversive context probe trials (black) shows acquisition of aversive context
selectivity from training day2 (top) to training day 3 (bottom), with stable
context responses during aversive feature presentationsinretrieval days1-2,
showninb. c-d, sameas a-b for reward context selectivity. e, Above, Heatmap
shows dF/F responses of reward selective neurons in reward probe trials (left)
and aversive probe trials (right) aligned to context onsetatt = 0 and context
endatt=10s (white dashed lines). Below, similar heatmap shown for aversive
selective neuronsinreward and aversive probe trials. f, Neural population

trajectories on probetrials, similar to Fig. 1h but during training, showing
divergent populationactivity inreward (red) and aversive (black) probe trials,
with variance explained by first 3PC’s (m1:29%, m2:19%) g, Performance of a
linear SVM decoder trained on dF/F responses at each time point after context
entryinreward and aversive reinforced trials and tested on probe trials shows
populationlevel discrimination between reward and aversive contexts.
(n=3mice, 6sessions (training). Datais presented as mean + sem, dashed line
shows chanceaty=0.5), h, Quantification of the fraction of neurons that are
context-selective (in training), feature-selective or conjunctive (in retrieval);
datapointsrepresentindividual mice (n =3 mice, *p = 0.024; paired t-test).
Details of statistical analyses in Supplementary Table.
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Extended DataFig.5|Retrograde tracing from dHPC and histology. a, Cingulate, TH - Thalamus; HY/fx: Hypothalamus/fornix, BLA: Basolateral
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Extended DataFig.6|CAlactivityinthe presence and absence of opsin.
a-d, Nosignificantactivation of st-GtACR2in AC/LEC during two-photon
imagingin CAlas assessed by similar neural activity patterns with (AC-GtACR,
LEC GtACR) and without (ctrl) opsin expression. a-c, Mean event rate, time
between consecutive events,and mean onset time of CAl neurons across all
three cohorts (ctrlno opsin, n=4; ACst-GtACR2,n =4; LEC st-GtACR2,n=3)
withnosignificant differences. d, Fraction of CAlneurons that are context
selectiveis similar across cohorts (ctrl no opsin, n =4 mice,9 sessions; AC st-
GtACR2,n=3mice, 7sessions; LECst-GtACR2, n =3 mice, 6 sessions) e-f, Mean
ensemble onset activity of CAlneuronsacrossboth AC st-GtACR and LEC st-
GtACR cohortsduring light-offtrials (no optical inhibition) is similar across
cohorts for both context-selective neurons (top) and non-context selective
neurons (bottom) (All dataare mean meanzts.e.m) g, Mean onsetactivity in CA1l
duringlight offand light on trials in context selective ensemble (top, Two way
ANOVA with Sidak’s correction, adjusted p values for AVOT ***p <0.0001, OT
****p <0.0001) and non-context ensemble (bottom, Two way ANOVA with
Sidak’s correction, adjusted p values for AVOT p = 0.008, A0OTp=0.0003,0T
p=0.0001) for LECinhibition cohort, signifies widespread inhibition of
neuronsin CAl(n=3mice, 6 sessions). h,sameasin(g) butfor ACinhibition

cohort (n=4mice, 7 sessions), context neurons (top, Two way ANOVA with
Sidak’s correction, adjusted p values for AVOT p=0.009, AOT p <0.0001, OT
p=0.0001) and non-context neurons (bottom, n.s.). i, Percent of all recorded
CA1(top) and CAlcontextneurons (bottom) that were inhibited during AC/LEC
opticalinhibition (n =4 mice, ACinhibition; n =3 mice, LECinhibition; Students
t-test p < 0.05for CAlcontext neurons; mean, quartile, minimumand
maximum are shown). j, Percent of CAlcontext and non-context neurons
inhibited during AC/LEC optical inhibition for all trials types (AVOT, AOT and
OT) combined for reward and aversive trials, n =4 mice, AC inhibition;n=3
mice, LECinhibition, each data point represents anindividual mouse (context
vs non-context neurons; for AC, F(1,18) =36.39, p < 0.001; for LEC;

F(1,12) =1.749, p = 0.21; Two-way ANOVA with Sidak’s multiple comparison) k,
Percentinhibition of dF/F activity of context vs non-context neuron ensembles
acrossall trial types (AVOT, AOT and OT) combined for aversive and reward
trials, n =3 mice, 6 sessions for LEC (left), 4 mice, 7 sessions for AC (right), data
aremeanwith eachsessionasanindividual data point; (Two-way ANOVA with
Sidak’s multiple comparison test; p = 0.035, adjusted *p < 0.05; **p < 0.01).
Details of statistical analyses in Supplementary Table.
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AAV1-EF1a-fDIO-mCherryin CAl.Neuronsinredreceive inputs from AC and
greenreceiveinputs fromLEC, with absence of neurons having convergent
input from AC and LEC (Scale: 400 pm (left), 200 um(right)). b, Same asin (a)
butinjected with AAVI1-hSyn-Crein ACand AAV1-EF1a-Flpin LEC, shows lack of
neuronsin CAlwith convergentinputs fromboth ACand LEC (Scale:400um
(left), 400pm (right)). c, (Top) Schematic of a multiplexed construct that allows
amarker tobe expressed only in cells that express both Cre and Flp:injecting
AAV1-hSyn-Crein AC,and AAVI-EFla-Flpin LEC, and AAV8-EF1a-Con/Fon-eYFP
in CAl. (Bottom) Coronal section of CA1shows no neuronsreceive inputs from
both ACand LEC. (Scale:400 um). d, (Left) Anterograde tracing using
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AAV1-hSyn-Cre, showingstarter cells (stained with Cre antibody) in AC (left) or
LEC (middle, overlaid with DAPI, Scale 400pm) with AC- (top) or LEC- receiving
(bottom) CAlneuronoverlaid with cFos stain (magenta) after retrieval day 1
(right, Scale:40um). e, Quantification of % of CAl neurons receiving AC/LEC
inputs that are cFos positive. LEC/AC n =4 mice, 8 sliceseach.p=0.002,
Welch’s t-test. Data points are individual slices, with meanzts.e.m. f,Retrograde
tracing from CA1(AAVrg-hSyn-Crein dCAland AAV1-CAG-Flex-eGFPin AC)
shows AC neurons (green) that project to dCA1(Scale: 400pum). g-i, Retrograde
tracinginemxl-cre (g) and vglut-cre (h) mice by injecting AAVrg-Flex-tdT in
starter cells of dCA1(i) revealing excitatory AC-CAlprojections. CAl projecting
ACneurons (red) overlaid with DAPI (blue, left) and CaMKIlI stain (green,
middle) (Scale:400um) and zoomed in (right, Scale:100um).
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Extended DataFig. 8| Two-photonimagingin ACduringbehavior.a, Mean
intensity Z-projections of two-photon-acquired imaging videos in AC, showing
3z-planesspaced 60pmapart (Scale: 50pm). b, Example GCaMPé6ftraces
during behavior. c-d, Detecting significant transients, with false positive rate
oftransients asafunction of time, fit to an exponential curve to determine
minimum transient duration and o threshold for FPR < 5%. Event onset was then
described as transient going above 2 o thresholds for 2 frames (-0.6 s).
(n=7mice, 14 session; Dataare mean+s.e.m). Detected transients overlaid with
rawtracesind.e, Retrogradely labelled CAl projecting neuronsin AC (red) in
recording FOV with syn-GCaMPéf (green), indicating the FOV has direct
monosynapticaccess to CA1/3 (Scale:150um). f-h, Neuron centroids across x-y
axis plotted asafunction of correlations tolick rate (f), speed (g) and
acceleration (h) shows minimal motor related signalsinrecording FOV. i, Single
trial neural trajectories from representative mice (n =2 shown) show
divergence betweenreward and aversive trajectoriesin probetrials, witha

linear SVM decoder trained on reinforcement trials and tested on probe trials
inj, indicating contextual discriminationin AC at population level (n =7 mice,
13 sessionsin training; Data are meants.e.m).k, Quantification of percent of
neuronsresponsive to each feature type across theretrieval sessions
(n=7mice, 11sessionsinretrieval).l, Quantification of the fraction of neurons
thatare context-selective (in training), feature-selective or conjunctive (in
retrieval); data pointrepresentsindividual mouse (n =7 mice; adjusted

*p =0.015; paired t-test). m, Schematic of bilateral Gi-DREADD-inhibitionin CA1
only across training days 1-3 while performing two-pho- tonimaging in AC
during training day 3 and retrieval, showing n, performance of SYM to decode
context duringtraining (n =3 mice, P <0.01 Mann Whitney U Test) and o,
quantification of percent of AC feature responsive neurons during retrieval for
CNOinjected DREADD (hM4Di) vs. control (mCherry) mice (n =3 mice, n.s.
paired t-test). Dataare meants.e.m.
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Extended DataFig.9|Feature ensemblesin AC compared with context
ensemblesin CAl. a, Feature responsive ensemblesin AC respond minimally
toother featuresinthe same context, shown for reward (left) and aversive
(right) feature presentations. b, Quantification of net dF/F activity of feature
responsive neuronsto all other feature presentationsin AC (left) and CA1
(right) fromn =3 mice inreward context. Note: only context responsive
neurons areshown (notall recorded neurons). Data are presented either as
meanzs.e.m (above) or as heatmap (below), with adjacent columnindicating
whether the neuron was statistically classified as feature selective (white) or
not (black).See Fig. 3ffor aversive ¢, Quantification of net relative response of a
feature selective ensemble to other features of the same context (dark) versus
the opposite context (light) in ACand CAlrespectively across all mice, each

pointrepresentsindividual mouse (n =7 mice (t,,=2.849;*p=0.023);n=3
mice CA1(t,, =5.035; ***p = 0.0002); Two-way ANOVA with Sidak’s multiple
comparisontest).d, Performance of SVM to decode reward and aversive trials
with allfeatures pooledinto either context (n =3 mice, 9 sessions CA1; 4 mice,
11sessions AC; Dataare meanzs.e.m). e, Schematic of state-space location of
different featuresin an N-dimensional space (N is the number of neurons) and
defining separationindexasratio of inter-contextual to intra-contextual
distance (right). Separationindex for AC (n =12 sessions) and CA1(n=9
sessions) (**p =0.003; Student’s t-test; data as meanzs.e.m) (left). f, Schematic
of FOSTRAP behavioral paradigm. Coronal section of AC shows neurons
expressing st-GtACR2 (red) stained with DAPI (blue) with cannulaimplant
(Scale:500um, 100um). Details of statistical analyses in Supplementary Table.
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feature selective neuronsin AC and context selective neuronsin CAl
(Kolmogorov-Smirnov two-tail test, p=0.002(m2), p < 0.0001 (m3)), with
mean onset times of ACand CA1 (n =3 mice, paired t-test, p = 0.01(Training);

p <0.0001(Retrieval)).g, proportion of shock responsive neurons active after
context-onset (showing first and last trials) as a function of time (cumulative
distribution function), and shown separately for each individual mouse. Details
of statistical analysesin Supplementary Table.



nature portfolio

Corresponding author(s):  Priya Rajasethupathy

Last updated by author(s): 5/7/2022

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

OXX O OO0 000F%
X

X OO X

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Custom MATLAB (v2017) scripts were used to built virtual reality based behavioral setups using VIRMEn (Virtual Reality MATLAB engine), and
for automated behavioral recordings. Calcium imaging data were acquired in Prairie View (Bruker Corporation) and Scanimage (v2020)
softwares

Data analysis Well validated algorithms, NoRMCorre (for motion correction); CNMF and Suite2p (for signal extraction), CellReg v1.5.1 (for cell registration)
were used to extract calcium sources and transients. Custom MATLAB (v2017) scripts were used to analyze data throughout, including
analysis of aligned behavioral and calcium imaging data. Data is plotted using MATLAB (v2017) and GraphPad Prism 9. Data is available from
the corresponding author upon reasonable request.
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Sample size Sample sizes were selected based on expected variance and effect sizes from the existing literature (Ref 21, 25, 66) and no statistical tests
were used to determine sample size a priori

Data exclusions  We used pre-established criterias for the following experiments : For all behavioral experiments, mice that did not learn the task during
training (p>0.05 between reward and aversive probe trials during training day 3 or showed discrimination index <0.1) were discarded from the
analysis. Beyond this, data was only excluded if the post-hoc histology showed misplaced or no viral expression or mistargeted cannula/GRIN
lens implant.

Replication Data were collected from multiple experiments, and all of the results were pooled. No experiment failed to replicate, within the same
biological samples across days and across independent biological samples. Behavior experiments were repeated three times with minimum of
5 animals per cohort. Imaging and simultaneous inhibition and imaging experiments were repeated atleast two times. Biological (mice) and
technical (sessions) replicates were pooled for statistical analysis in the main figures, and statistics were derived for biological replicates (each
mice) separately (by averaging across technical replicates) in supplementary figures where possible. Tracing experiments were repeated
atleast two times each with minimum of 3 animals.

Randomization  Mice were randomly assigned to experimental or control groups prior to the experiments being performed.
Blinding Investigators were blind to control and experimental groups in all behavioral experiments (bilateral optogenetics, paired imaging and

optogenetics experiments), and all analyses were automated to use same statistical threshholds irrespective of the cohort type. All data
collection and analyses were automated using custom MATLAB scripts
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Antibodies

Antibodies used Primary : rabbit anti-c-Fos (Cell Signaling Technology, Cat#2250); abbit anti-cre recombinase (Abcam, Cat #190177); CaMKIl alpha/
beta/delta rabbit polyclonal antibody (Invitrogen, Cat #PA5-38239)
Secondary : donkey anti-rabbit (Jackson ImmunoResearch, Cat#711-605-152); Alexa Fluor 488 donkey anti-rabbit 1gG (H+L) Highly
Cross-Adsorbed secondary antibody (Thermo Fisher Scientific, Cat#A-21206)

Validation cFos antibody is commercial and previously validated by immunohistochemistry for mice, as per manufacturer's website, and
commonly tool previously (Cheng et al., 2018; Faget et al., 2018). cre and CaMKII antibody is well validated as per manusfacturer's
webite, commonly used in the field and in our lab.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals In this study, we used both male and female wild type C57BL/6 mice (Jackson Lab, Strain #:000664), aged 6-8 weeks at the start of
experiments in the study, including behavior and in-vivo imaging experiments. Other genotypes used are : FosTRAP2 (The Jackson
Laboratory, Strain #:030323); emx1-cre (The Jackson Laboratory, Strain #:005628); vglut-cre (The Jackson Laboratory,Strain#:
016963).

Wild animals The study did not involve wild animals.
Field-collected samples  The study did not include field-collected samples

Ethics oversight The Institutional Animal Care and Use Committees at The Rockefeller University provided oversight and guidance for the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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