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SUMMARY

The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging
technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide pro-
cess. In this perspective, our goal is to begin developing models to understand the gradual evolution, reor-
ganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By
synthesizing studies across the rodent and human literature, we suggest that as memory representations
initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they
mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become pro-
gressively independent of hippocampus and dependent on a mature cortical representation. A key feature of
this model is that, as time progresses, memory representations are passed on to distinct circuits with pro-
gressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories
in the process of committing to long-term storage.
INTRODUCTION

Humans and other organisms have a remarkable capacity to

extract information from the environment into a spatiotemporal

framework and store such episodes as distinct memories.

However, time and experience have a pivotal role in shaping

the subsequent evolution of a memory. For instance, some

everyday memories such as seeing pedestrians on the way

to work may be quickly forgotten the next day, whereas vivid

details of one’s graduation ceremony or repeated interactions

with a school teacher may acquire importance over time and

experience that solidify those memories. Where and how in

the brain these memories initially form and gradually reorga-

nize/stabilize over time has been an active area of investiga-

tion.1–6 Early insights came from patients with damage to the

hippocampus (HPC) who exhibited a profound inability to form

new episodic memories, providing an entry point for scientific

inquiry. Indeed, decades of studies have since focused on the

HPC and associated medial temporal lobe areas to under-

stand what makes memory possible—what are the inherent

molecular, cellular, and physiological properties of hippocam-

pal neurons that enable transient external information to be

coded into lasting internal representations. Through this

work, we have understood that strong external stimuli can

lead to progressively longer lasting internal cellular changes,

for instance from enhanced pre-synaptic neuromodulatory

release (seconds), to post-synaptic receptor activation and

signaling (minutes), to nuclear protein synthesis (hours), and

to functional and structural synaptic strengthening (days).7–10

These events together are thought to lead to stable stim-

ulus-associated activity patterns of cellular ensembles,
network-level contextual memory representations in the

HPC, and behavioral memory recall.11–14

One of the most striking features of the HPC is that it is the first

and perhaps primary location in the brain where there is a

convergence of ‘‘what,’’ ‘‘where,’’ and ‘‘when’’ streams of infor-

mation about the external world.15–20 This ideally situates the

HPC to store ‘‘episodes,’’ which through its recurrent circuitry,

can bind episodic features into unifying conjunctivememory rep-

resentations. However, the HPC may primarily be an engine for

memory formation but have time-limited roles inmemory storage

and recall. Indeed, while patients with hippocampal lesions

exhibit an almost complete inability to form new memories,

and retrieve recent memories, they exhibit an intact ability to

retrieve memories as they become more remote in time.1–4

Thus, these phenomenological observations provided the first

hints of an evolving memory trace extending beyond the HPC,

and spurred interest to locate the neural substrates.

Without surprise, these memory traces are neither static nor

localized to a single brain region, but rather they are constantly

evolving. Even as memories are being formed in the HPC, there

are parallel representations that facilitate an active reorganiza-

tion across the brain into cortical structures. Classical models

have emphasized the role of the HPC as an ‘‘index,’’ which can

reactivate and strengthen cortical representations.21,22 Over

time and experience, such cortical stabilization may lead to a

gradual decontextualization of the memory into a more semantic

form at the expense of detailed episodic representations.3,23,24

Thus, it is widely agreed upon thatmemories continuously evolve

and that extra-hippocampal structures have significant contribu-

tion to the progressive stabilization of memory representations,

but the mechanistic details beyond the HPC are still poorly
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Figure 1. Anatomical connectivity of the dorsal hippocampus
(A) Inputs to the dorsal hippocampus (dHPC) involved in memory processing. Most prominent input to dHPC (depicted in bold) are from the entorhinal cortex
(ENT). Other inputs to the dorsal hippocampus include the prefrontal cortex (PFC), anterior thalamus (AT), medial septum (MS), hypothalamus (HY), retrosplenial
cortex (RSP), and various neuromodulatory regions. This perspective focuses on regions highlighted by high color opacity.
(B) Outputs from the dHPC involved in memory processing.
The major outputs from the dorsal hippocampus (depicted in bold) target the mammillo-thalamic tract and entorhinal cortex. The former is through the fornix
bundle, which targets the anterior thalamus (AT) directly or via the mammillary (MM) bodies, that then further project to PFC, forming the Papez circuit. dHPC also
sends strong direct and indirect projections through subiculum to the entorhinal cortex (ENT). Other notable outputs include the retrosplenial cortex (RSP), lateral
septal nuclei (LS), amygdala (AMY), and prefrontal cortex (PFC). This perspective focuses on regions highlighted by high color opacity.
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understood. Why are some memories selected for further

stabilization while others forgotten? Are there a series of anatom-

ically defined circuits extending beyond the HPC that provide

sequential or parallel routes of memory reorganization, and

does memory stabilization happen as a continuous process, in

a stepwise punctuated manner, or in multiple discrete stages?

With increasing technological capabilities to observe brain-

wide activity patterns longitudinally during behavior, it is

becoming more possible to follow the dynamics of an ever-

evolving memory trace. The emergence of functional studies at

cellular resolution across anatomically connected circuits in

the brain is providing an opportunity to build upon previous

models and advance our collective understanding of the time-

dependent reorganization of memories.

In this perspective, our aim is to provide a mechanistic frame-

work for how memory representations may evolve over time,

with emphasis on extra-hippocampal structures, and in partic-

ular the progressive involvement of thalamus and prefrontal cor-

tex (PFC) with time. First, we review the connectivity of the HPC,

discussing its inputs and outputs, which may provide defined

neuro-anatomical pathways for the maturation of memory repre-

sentations (Figure 1). We then investigate their roles in represent-

ing memories of varying durations from (1) newly formed mem-

ories (minutes to hours) to (2) recent memories (days) and (3)

remote memories (weeks to months in rodents, years in hu-

mans). Reviewing work from both animal and human studies,

we propose a model where the entorhinal-hippocampal circuit

is primarily involved in the initial construction of a memory, but

parallel representations emerge in thalamus and PFC that are re-

cruited for subsequent recall and stabilization of the memory.

Over time, hippocampal memory representations gradually

evolve rostrally and reorganize over frontal cortical circuits but

require subcortical interactions, including sustained thalamo-

cortical interactions, for long-term stabilization of cortical repre-

sentations (Figure 2). A key component of this model is that as
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time progresses, memory representations are passed on to

distinct circuits, each of which have progressively longer time

constants. We also discuss alternative solutions. Ultimately, a

more mechanistic understanding of memory progression in the

brain may inform a search for therapeutic targets aimed at

various stages of cognitive rescue.

Anatomical connectivity
Inputs and outputs of dHPC that may provide defined

neuroanatomical pathways for the maturation of

memory representations

The connectivity patterns of the HPC change gradually across its

dorsoventral gradient. Dorsal HPC (dHPC) (posterior in primates)

has been shown to be necessary for the formation and storage of

episodic memories,25,26 whereas the ventral (anterior in pri-

mates) is more prominently associated with its roles in the regu-

lation of emotional or affective processing.27 Here, we confine

our discussion of the anatomical connectivity to the dHPC.

Inputs to dHPC

Across species, the strongest input to the dHPC is from the en-

torhinal cortex (ENT)28,29 (Figure 1A). The lateral and medial en-

torhinal cortices receive broad sensory input into layer V and in

turn convey contextual and spatial information to the HPC via

layers II/III. ENT layer II provides the main indirect input to CA1

via the tri-synaptic pathway (DG-CA3-CA1), whereas layer III

provides direct input to CA1, through both excitation and long-

range feedforward inhibition. Together, these inputs are thought

to provide signals related to learning andmemory formation.30,31

Other inputs to dHPC in rodents and also in humans are from

the PFC, anterior thalamus (AT), medial septum (MS), hypothal-

amus (HY), retrosplenial cortex (RSP), and various neuromodula-

tory nuclei32–35 (Figure 1A). Many of these hippocampal inputs

have been hard to appreciate and quantify until recently, as ad-

vances in tractography and viral tracing methods, in particular

the improved sensitivity of retrograde tracers, have helped



A B C

D Multi-step memory stabilization recruits circuits
with progressively longer time constants

Separate circuits for each time constant allows:
Fast learning & slow stabilization
Updating & forgetting
Multiple gates prior to long-term storage

PFC representations stabilize via recurrent interactions initially with limbic,
then diencephalic, then cortico-cortical connections

Figure 2. Proposed model of memory reorganization/stabilization over time
(A) Entorhinal cortex (ENT) supports the formation of a conjunctive representation of a contextual memory in the hippocampus (HPC) during learning.
(B) Limbic areas (HPC and ENT) support the emergence of prefrontal cortex (PFC) representations, which initially are constituent features of contextual memory.
This also enables prefrontal feature representations to exert top-down control over HPC in providing cues, goals, and context that guide recall of recently formed
memories.
(C) With passage of time, there are increased diencephalic (thalamic) and cortical-cortical interactions that enable memories to become independent of
hippocampus and progressively stabilized across distributed cortical circuits.
(D) Memory reorganization and stabilization across the brain over time, with passage onto circuits with progressively longer time constants.
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illuminate their density and functional importance. For instance,

multiple studies have now reported direct long-range projections

from the PFC to the dHPC20,32,36–38 that were traditionally sus-

pected to interact via solely intermediary structures. Retrograde

labeling of even just a few starter cells in the HPC CA1 reveals

prefrontal inputs,39 and by accessing a more complete popula-

tion of starter cells (tracing protocols detailed in Yadav et al.,20

Methods, ED Figures 5 and 7, and Note S1), the prefrontal pro-

jections to dHPC are substantial, can be optimized for tracing

in the anterograde direction, and are found to be functionally

important, as now characterized by several studies.20,32,36–38

The real value of these anatomical advances, especially when

convergent across species,34,40,41 is that it allows for targeted

neurophysiological investigation in rodents of long-standing

prefrontal-hippocampal theoretical frameworks developed in

humans.42–44

Both excitatory20,32,37,38 and inhibitory36 projections from the

anterior cingulate (AC) and prelimbic/infralimbic (PL/IL) regions

of the PFC, respectively, have mono-synaptic inputs onto

dHPC including at its superficial and deep layers. Interestingly,
the prefrontal inputs appear to target a largely non-overlapping

population of neurons in dHPC-CA1 compared with the entorhi-

nal inputs.20 Functionally, the direct prefrontal excitatory and

inhibitory inputs allows PFC to exert top-down control of HPC

during goal-directed behaviors and memory recall, via changes

in excitation—inhibition balance, signal-to-noise, and recruit-

ment of associated memory ensembles.20,32,36–38 PFC also ex-

erts indirect influence over the dHPC through extra-cortical

pathways, via MS, midline thalamus, amygdala (AMY), and

ENT, with dense projections particularly to layer V of lateral ento-

rhinal cortex (LEC) (Figure 1A). Together, prefrontal inputs are

positioned to provide top-down context-dependent signals dur-

ing learning and recall. Throughout the manuscript, for compar-

ison across species, we define PFC as the cortical region with

recurrent connections to the medial dorsal nucleus of the thal-

amus. Where appropriate, we will define the sub-region of the

PFC that we are referring to, either in rodents or primates.

Within the thalamus, it is components of the association thal-

amus (areas of thalamus that do not receive primary sensory

innervation nor project to primary sensory/motor cortices), and
Neuron 112, April 3, 2024 3
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in particular the AT, specifically the anterodorsal (AD) and ante-

roventral (AV) nuclei, that send dense projections to the para-

hippocampal regions including the postsubicular, presubicular,

and parasubicular cortices, with AD terminating in layers I, II/III,

and V, and AV terminating in I and V45 (Figure 1A). The nucleus

reuniens also provides input to dHPC,46 though this may be spe-

cies specific.47–49 The anterior thalamic nuclei provide head-di-

rection signals and contribute to spatial encoding in the HPC

and may be an area that is actively disengaged during memory

consolidation.50 However, beyond these roles, other functions

of AT, and of association thalamic nuclei in general, are poorly

understood.

Outputs from dHPC

Across species, the major output of the dHPC is the fornix fiber

bundle tract—the anterior portion of which targets the AT directly

or via themammillo-thalamic tract while the posterior portion tar-

gets septal nuclei and ventral striatum (Figure 1B).33,51,52

Notably, in humans, the single largest output of the HPC (20%

of all output) is direct connection to AT,51 which in turn has strong

recurrent projections to frontal cortex, forming the core compo-

nent of the hippocampal-thalamo-cortical Papez circuit. The

other main outputs of the dHPC are to the entorhinal and retro-

splenial cortices, which in turn project to PL and IL areas of

PFC in rodents and AC regions of PFC in humans.53,54 Other hip-

pocampal outputs include to AMY and lateral septum, as well as

direct connections from dHPC to PFC.37,55

LEARNING AND MEMORY FORMATION (MINUTES
TO HOURS)

The entorhinal-hippocampal system in learning and
memory formation, with extra-hippocampal
representations emerging in parallel
Memory formation in the HPC has been extensively re-

viewed.11,30,56 The ENT, being a major gateway into the HPC,

has been well studied for its role in memory formation

(Figure 2A). In brief, it is composed of medial and lateral subdivi-

sions, where the medial entorhinal cortex (MEC) conveys spatial

maps and the LEC conveys temporal and multi-sensory integra-

tion, thus together providing the elements of an episodic mem-

ory. Accordingly, MEC cells have defined spatial firing fields,

called grid cells, and related navigational and self-motion signals

that provide a reference orientation of the organisms’ position

with respect to the environment, contributing to the formation

of place fields in the HPC.57–61 LEC cells, on the other hand,

encode for multi-sensory and object-context associations that

are then conveyed to HPC via direct and indirect pathways to

CA1,62–65 with important contributions of long-range and local

inhibition in selecting and refining the precision of these repre-

sentations.65–69 Recent studies have also shown combined

spatial and contextual information relayed by each of the entorhi-

nal cortices to the HPC.70,71 Thus, during learning, EC enables

the creation of an episodic memory representation in HPC, and

moreover, can sculpt the overrepresentation of behaviorally rele-

vant aspects of an episodic experience, for instance, spatial lo-

cations or sensory experiences tied to reward.72,73

Moving beyond the entorhinal-hippocampal system, recent

studies have pointed toward the emergence of parallel memory
4 Neuron 112, April 3, 2024
representations in the PFC and the thalamus during learning

(Figure 2B). For instance, immediate early gene studies and neu-

ral recordings reveal episodic representations, i.e., contextual

and/or spatial responses, in PFC during learning.20,48,74–78 Inter-

estingly, while these representations emerge concurrently with

the HPC during learning, it is not clear the extent to which they

are in fact required for learning and rather may support subse-

quent memory reorganization and stabilization. Upon PFC inac-

tivation during learning, some studies show impairment in task

performance in both spatial and non-spatial learning, whereas

others show little to no effect during learning with stronger defi-

cits in memory retrieval.79–85 A parsimonious explanation can be

derived from observing PFC activity across tasks with different

cognitive loads. For instance, in rodents, behavioral tasks

requiring a higher cognitive load such as new learning that con-

flicts with or has spatiotemporal overlap with prior memories re-

cruit more prefrontal activity and require PFC for learning and

memory formation. In these cases, PFC actively interacts with

and informs ongoing hippocampal representations, for instance

by signaling a rule or goal change or relaying the context of novel

information.74,86,87 Further underscoring the importance of these

top-down interactions during learning, inhibition of PFC results in

suppressed hippocampal activation of immediate early genes,

reduced stability of place cells, remodeling across the LEC-

CA1 network, and an impairment in memory expression.88,89

Similarly, in humans, patients with frontal lobe dysfunction

exhibit deficits in tasks such as novel word learning, contextual

encoding, temporal ordering, semantic organization, and asso-

ciative memory encoding, all supporting the involvement of

PFC in learning and memory formation, particularly when orga-

nizing newly learned informationwith respect to prior memory ar-

chitecture in the brain. Notably, such continuous learning pro-

cesses likely recruit multiple prior memories into working

memory90 at the time of new learning, further underscoring the

progressive involvement of the PFC in memory formation with

increasing cognitive load. Collectively, studies spanning animal

models to humans support active involvement of PFC at the

time of learning, to support ongoing memory formation, but

also to support future memory reorganization and updating.

What supports the formation of these contextual representa-

tions in the PFC? PFC is well positioned to receive sensory

information directly from sensory and association cortices as

well as more processed contextual information from the hippo-

campal-entorhinal circuit. For instance, entorhinal inputs to

PFC have been shown to be necessary for acquisition of learned

information,91 inhibition of which can destabilize prefrontal

network assemblies and increase cortical representational

drift.92 Furthermore, it has been shown that hippocampal- and

entorhinal-prefrontal synchrony increases learning and memory

retention93–96 and also that the hippocampal activity leads pre-

frontal activity during learning,20,97 suggesting that bottom-up

inputs from HPC-EC engages and stabilizes the prefrontal

cortical network during learning.

In the thalamus, learning related representations of context

have primarily been shown to emerge in the AT, which is

composed of three sub-nuclei (anteromedial [AM], AV, and AD)

with overlapping functions spanning both contextual memory

and spatial processing.45 The most prominent learning related
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signals are observed in AD, where neurons are strongly tuned to

spatial features, including head-direction98 and lesions of the AD

dramatically impair spatial memory formation.99–101 AM on the

other hand has strongly tuned contextual representations that

emerge during learning; however, silencing of AMduring learning

has no effect on memory formation but does lead to long-term

deficits in memory stabilization and consolidation.52 Thus, while

AD and AV thalamic nuclei have active roles in ongoing learning

and memory formation, AM representations during learning sup-

port future memory reorganization and stabilization.

An incredible amount of collective progress has been made in

understanding how memories are formed in the HPC. There is

increasingmechanistic clarity on how bottom-up stimulus driven

inputs (i.e., from entorhinal) shape learned associations in HPC,

and at the same time, how top-down processed, goal-directed

information (i.e., from prefrontal, association thalamus, and other

areas) can also shape ongoing hippocampal memory represen-

tations. Future workwill benefit from an increased understanding

of how these bottom and top-down processes work together

and continuously inform each other, especially as task com-

plexity, cognitive control, and anticipation of future events

become important components of memory formation.69,102–105

RECENT MEMORIES (HOURS TO DAYS)

Early prefrontal memory representations participate
in a recall circuit and may mature to represent
the eventual consolidated memory
While the role of the entorhinal-hippocampal circuit as the major

gateway for memory formation has been well studied, compara-

tively less is known about the process of memory recall, and

whether it uses the same or different pathways. Many studies,

over a variety of model organisms and behavioral tasks have ce-

mented the notion that the HPC, and in particular the CA1 region,

is essential for recall of recently formed memories. However,

during recall, it is not well understood how externally or internally

cued stimuli are routed to HPC, how a specific memory repre-

sentation is accessed, and how it drives appropriate recall-

related conditioned responses and behavioral output. The clas-

sical model has suggested that the same pathway used for

memory formation, i.e., the entorhinal-hippocampal circuit, is

likely to be used formemory recall.106 This is especially attractive

since many of the original cues, i.e., sensory and spatial features

of the original memory, may remain stably represented in the

ENT, providing cues for future retrieval of episodic representa-

tions in HPC. However, there has been a sparsity of evidence

of strong memory recall deficits with silencing or lesion of the

ENT. In many cases, inhibition of ENT after the initial formation

of a memory results in preserved spatial and contextual repre-

sentations in HPC and intact memory recall.73,107–109 This

suggests that the ENT may refresh its representations rapidly

to support new learning and that alternate inputs to HPC may

take over functions of memory recall. In support of this,

several studies in rodents have demonstrated that perturbations

of PFC can lead to substantial memory retrieval deficits,

especially as expectation guides memory retrieval in a ‘‘top-

down’’ manner as is often the case in daily life; for instance, dur-

ing memory retrieval with partial cues or goal-directed spatial
navigation .48,75,110–112 Furthermore, simultaneous paired LFP

recordings have shown that the activity of HPC leads PFC during

memory formation, for instance, as rodents enter a spatial

context, but this information flow reverses and PFC leads HPC

during recall as objects are sampled and context-appropriate

features are retrieved.97 Finally, a direct mono-synaptic projec-

tion from PFC (AC cortex) to HPCwas identified and it was found

that activation of this projection was sufficient to recruit memory-

associated ensembles in HPC, representing a previously experi-

enced context, as well as behavioral recall of the associated

conditioned response.32 These studies together suggested an

important role for PFC in memory recall, but the mechanistic de-

tails of this process remained poorly understood. What do neu-

rons in PFC encode during learning and how do they route

cues to the HPC to access memory representations and enable

memory recall?

A recent study provided a first in-depth exploration into the

mechanistic details underlying the process of contextual mem-

ory recall.20 The authors began by developing a behavioral

task in which memory formation and recall can be studied sepa-

rately. To do so, they took advantage of the fact that during

memory formation animals typically experience all aspects of a

context (sight, sound, tone, and smell) that are bound together

into a single contextual representation, whereas during recall an-

imals can experience just a subset of the original cues (a scent) to

bring back the full memory. Therefore, they developed a behav-

ioral task where mice learn to associate entry into multi-modal

contexts or ‘‘rooms’’ with either rewards or punishments and

then later are exposed to partial features of these rooms to elicit

memory recall. By interleaving recall trials cued by one, two, or

three partial features, delivered at precise times or locations in

virtual reality, the authors were able to vary the cognitive load

on memory retrieval. The authors also developed methods to

perturb and image multiple brain areas while mice performed

this task. Through these approaches they found that mice do

not use the canonical storage pathway (entorhinal-to-hippocam-

pal circuit) when performing recall. Rather, as mice form a mem-

ory, the HPC encodes a low-dimensional representation of

global context, whereas the individual contextual features are

parsed and stored in high-dimensional orthogonal neural popu-

lations in frontal cortex (Figure 2B). These parallel encoding ap-

proaches are consistent with the notion that PFC tends to

encode information in a high-dimensional manifold via non-linear

embeddings, whereas the HPC tends to compress this vast

dimensionality into a global context of experience.113–117 They

subsequently found that during behavioral recall, presentation

of any individual feature was sufficient to activate the corre-

sponding feature ensemble in PFC, which led to recruitment of

corresponding contextual ensembles in HPC that were neces-

sary to enable behavioral recall. They thus identified and charac-

terized a memory recall pathway where previously stored fea-

tures in PFC act as pointers to recall the associated contextual

memory in HPC. More broadly, their work supports a model

where even asmemories are being formed via the entorhinal-hip-

pocampal pathway, a parallel prefrontal-to-hippocampal

retrieval circuit is being trained and established to support future

externally—or internally—cued memory recall (Figure 2B). This

early prefrontal feature-code may eventually mature and
Neuron 112, April 3, 2024 5
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constitute a core component of the long-term cortical repository

of the memory (Figure 2C), akin to previously proposed molecu-

lar118 and cellular74 cortical tags.

The dichotomy of separable storage and retrieval pathways

emerging in the rodent literature is indeed well supported by

the human literature. Advances in human brain imaging in the

1990s and 2000s revealed multiple reports of neural activation

of entorhinal cortices during memory formation119,120 but of pre-

frontal cortices during memory recall.121–130 The PFC was

strongly and specifically recruited for recall tasks including

for verbal and non-verbal recall126 and prominently during volun-

tary recall124 of detailed source memories beyond simply recog-

nition memory.129 For instance, both PET and fMRI imaging

methods in humans and electrophysiological studies in primates

detected prefrontal correlates for memory recall of cued associ-

ations, object-item pairs, and verbal recall of previously learned

passages.123,125,130 Furthermore, patients with frontal lobe

damage exhibited striking deficits in the accuracy of memory

recall and a significantly weaker release from proactive interfer-

ence.121,122,127,128 Continued mechanistic studies spanning ro-

dent, primate, and human across a range of behavioral tasks

will further clarify whether and how continuous reorganization

in the brain supports separable circuits for memory formation

and recall.

As wework toward building amodel that integrates these find-

ings, an important area of focus will be to understand the evolu-

tion of these ‘‘early’’ prefrontal memory representations over

time—its progressive stabilization and gradual transformation

across multiple experiences (Figure 2C). An interesting element

of our memories is the ability to remember salient contextual de-

tails and yet also abstract out semantic knowledge frommultiple

experiences. Given that the PFC is thought to be heavily involved

in continual learning as well as the generalization and abstraction

of knowledge (recently investigated in Bernardi et al.,131 Reinert

et al.,132 and Samborska et al.133) are the feature representations

observed in PFC schema-like and therefore regularized across

similar experiences? Or are these representations gradually

transformed and stabilized with bottom-up inputs from the

HPC/ENT as memories become consolidated? Future studies

will thus benefit from understanding how memory representa-

tions evolve over time, and in particular, how bottom-up path-

ways integrate with top-down pathways to balance new learning

with the assimilation of prior memories.

REMOTE MEMORIES (WEEKS TO MONTHS IN
RODENTS; YEARS IN HUMANS)

Early prefrontal memory representations may require
continuous stabilization, initially via limbic input
followed by diencephalic input and then cortical-
cortical input
Recently formed memories critically rely on the HPC, however,

over time these memory representations are thought to reorga-

nize and distribute across the brain, becoming gradually hippo-

campal independent. This process of memory stabilization, or

consolidation, was first articulated by Brenda Milner and col-

leagues and subsequently by many others through a series of

observations from patient studies.1,134,135 They found that pa-
6 Neuron 112, April 3, 2024
tients having damage to the HPC and medial temporal lobe ex-

hibited a profound inability to form new memories, and amnesia

for recently formed memories, but preserved recall of remote

memories from several years ago and including childhood and

autobiographical memories. Decades of study in animal models,

including in primates and rodents, have reproduced these find-

ings.6,25,136–142 For instance, hippocampal lesions have resulted

in a predominant recent memory deficit whereas frontal cortical

lesions have resulted in a stronger remote memory deficit when

testing on a variety of behavioral tasks such as contextual fear

conditioning, spatial and non-spatial episodic memory tasks,

spatial discrimination tasks, and novel object recognition.

Furthermore, metabolic labeling, immediate early gene analysis,

or neural recordings predominantly identified decreased activity

in HPCover the lifetime of amemory with a concomitant increase

in frontal cortical activity, thus providing a potential neural sub-

strate in cortex for remote, stabilized, memories. These studies

led to a formal ‘‘standard model of systems consolidation’’143

in which the HPC transiently stores new memories, and over

time, trains cortex, in particular frontal cortex, to create and store

more enduring representations. However, the mechanistic de-

tails of this process have remained elusive.

Meanwhile, parallel case studies emerged where patients with

hippocampal damage exhibited a flat retrograde amnesia, i.e., a

loss of both recent and remote recall leading to the development

of the multiple trace theory,4 and indexing theories,22,144 sug-

gesting more continued involvement of the HPC over the lifetime

of a memory. In particular, multiple trace theory posits a

continued role of HPC for episodic information with semantic in-

formation being extracted and maintained in cortex. Whenever

the HPC maintains involvement, index theory posits that the

HPC forms an index of neocortical activity encoding a memory,

and that this index can reactivate cortical patterns during recall.

Accordingly, subsequent studies in rodents with hippocampal

lesions also found a flat retrograde amnesia, particularly so for

spatial memories.145–148 These studies have led to alternate

models of memory consolidation4,149,150 that describe varying

levels of continued involvement of the HPC over time.

There are several lines of thought that may integrate these

alternate findings with the historically overwhelming support for

the standard model of gradual hippocampal-to-cortical memory

consolidation. Perhaps the most parsimonious explanation is

that hippocampal dependent memories become ‘‘semanti-

cized’’ or more ‘‘generalized’’ as they reorganize to cortex, i.e.,

competitive trace theory and trace transformation the-

ory.23,24,151 Since most remote memories that we recollect in

our everyday lives are not detail oriented, the cortical represen-

tation is sufficient, even adaptive, for serving the purpose of

remote memory recall. For the rare memories that we continue

to recollect in a detailed manner, these may continue to require

hippocampal access. In the case of contextual-spatial memory

in rodents with high navigational demands, the HPC may initially

store detailed spatial locations, whereas over time this contin-

uous space may be discretized and generalized as broad fea-

tures of a memory, i.e., reward locations or object-place associ-

ations stored across cortical networks. This framework aligns

with classical work that makes an important distinction between

memory recall due to recognition vs. that due to detailed
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recollection.30,150,152 Another parsimonious model involves

formulating the role of the HPC as one of scene construction—

the HPC is known to be able to construct and anticipate repre-

sentations based on information from cortical substrates, which

aligns with its roles in prospective coding.153–156 Thus, while the

HPC in most cases may not maintain a long-standing active

memory representation, under novel circumstances, it might

receive information from cortical and subcortical inputs to link

and anticipate spatial or contextual scenes, i.e., ‘‘scene con-

struction theory.’’149

In both of the above cases, such a model allows the HPC to

offload most memory representations over time in order to sup-

port rapid and continuous new learning and memory formation.

More importantly, it enables multiple layers of filtering, gating,

and brain-reorganization before committing a memory into

longer-term storage. The gradual hippocampal-to cortical reor-

ganization also supports adaptive memory processes including

forgetting, updating, and progressive stabilization. Accordingly,

while some memories may involve the HPC to varying degrees

over its lifetime based on the nature of the memory, that all

memories eventually become cortically represented remains

uncontroversial.

Despite this, since the initial studies of Brenda Milner in

the 1950s describing hippocampal-to-cortical consolidation,

still today there is limited to no mechanistic understanding

of this brain-wide reorganization; why some memories are

consolidated, while others are forgotten, and how. Toward

mechanistic insight, two recent studies aimed to understand

how an initial memory-associated cortical ensemble matures

with time.77,91 To do so, they permanently labeled cortical en-

sembles that are active at the time of memory encoding, in this

case the memory of a context that is associated with shock.

They then reactivated this same labeled population weeks later

to assess whether it would be sufficient to drive memory recall

of the original encoded memory, i.e., a fear response associated

with the original context. In both studies, the results suggested

that while a small subset of the initial encoding population still

functionally contributes to memory recall weeks later, the major-

ity of the initial ensemble functions to support the maturation of

other ensembles that constitute a more stable memory repre-

sentation supporting remote memory recall. These studies thus

suggested continuous functional reorganization occurring in cor-

tex throughout memory consolidation.

These efforts thus begged the question, can we follow the

maturation of cortical ensembles in real-time with longitudinal

neural recordings? Even better can we capture simultaneous

neural activity patterns in HPC, cortex, and intervening brain cir-

cuits during behavioral memory consolidation to understand the

mechanistic details of this weeks-to-months-long HPC to cortex

brain-reorganization process? A recent study aimed to address

these challenges.52 They began by developing a behavioral

task where mice formed multiple memories, i.e., room-outcome

associations in a virtual linear corridor, but over time, due to vari-

ation in the salience of the room or value of the outcome, mice

consolidated some memories while forgetting others. This

allowed isolation of brain dynamics that uniquely support the

process of memory stabilization. By recording bulk neural activ-

ity from circuits that link HPC and cortex, i.e., AMY, ENT, RSP,
AT, as mice performed this task, the authors identified a sus-

tained weeks-long neural correlate of memory in the AT, sug-

gesting roles in hippocampal-to-cortical memory consolidation.

Indeed, inhibition of the AT to PFC thalamo-cortical projection,

while having no effect on memory formation, or early retrieval,

severely disrupted memory consolidation over several weeks.

More strikingly, activation of this circuit was sufficient to drive

consolidation of otherwise unconsolidated memories. To

develop mechanistic insights into the computations occurring

in AT that enable cortical consolidation, the group developed a

technology for simultaneous high-resolution cellular imaging of

HPC, AT, and PFC for many weeks throughout consolidation.

They found that while HPC encodes multiple memories equally,

the AT preferentially encodes strongmemories (i.e., rooms asso-

ciated with higher reward value) and gradually establishes long-

range functional interactions with PFC for stabilization. Thus, it

supports a model where HPC and PFC initially form parallel

memory representations, but cortex requires sustained tha-

lamo-cortical interactions for long-term stabilization. Overall,

these findings identify a memory consolidation pathway, via

HPC to AT to cortex, and reveal a function of the AT in selecting

and stabilizing memories for long-term cortical storage

(Figure 2C). Notably, in humans, the AT has roles in directing

and prioritizing the selection of preferred cortical ensembles

during memory-guided behaviors.157 More importantly, these

findings in rodents resonate with clinical observations where

Korsakoff syndrome patients bearing lesions of the same HPC

(mammillary [MM])—AT—cortex circuit present with graded

retrograde amnesia,that, importantly, is increasing in retrograde

severity with increasing thalamo-cortex pathology158–161 (Box 1).

The development of a new behavioral model and an approach

for high-resolution longitudinal multi-area brain imaging has

helped to begin offering insights into how memory representa-

tions gradually reorganize and stabilize across the brain over

time. Still, many questions remain. How is selection of salient ex-

periences performed at the level of the AT? Why does it take so

long to stabilize these representations to cortex (given that the

thalamic representation emerges during training, but the cortical

representation is not stabilized and required for behavioral recall

until weeks later)? And how do sleep and ‘‘offline’’ processing

contribute to this slow but robust process? More in-depth study

of the thalamus in memory processing, which due to technical

and conceptual barriers has been largely neglected, will help

facilitate answers to these questions.

While the thalamus has been historically viewed as a simple

relay for sensory-motor functions, its ability for rich computa-

tional processing, and contributions to higher-order cognitive

functions are becoming well appreciated.52,166–169 Indeed the

thalamus is a central brain structure that is very heterogeneous,

in which the sensory andmotor nuclei are well suited to relay and

propagate information between brainstem and cortex, whereas

higher-order association nuclei receive rich neuromodulatory

and other value-assigning input from diverse regions of the

brain,170–174 thus providing capabilities for selecting and stabiliz-

ing salient information.52 Furthermore, given the multiple, paral-

lel, and recurrent loops between the various thalamic nuclei

and cortical regions, it is attractive to consider that diverse types

of memories, whether it be contextual, motor, perceptual,
Neuron 112, April 3, 2024 7



Box 1. Korsakoff syndrome: Amnesia from pathology of the mammillo-thalamo-cortical tract

Etiology: Korsakoff syndrome is a brain disorder characterized by severe lack of thiamine (vitamin B1), most commonly due to

chronic alcoholism, which leads to digestive tract damage and vitamin malabsorption. However, any condition that affects vitamin

reabsorption can cause Korsakoff syndrome, including for instance irritable bowel syndrome, bariatric surgery, dialysis, cancer,

chronic infections, or poor nutrition. In the acute stages of thiamine deficiency, the condition is referred to as Wernicke’s enceph-

alopathy, which, if left untreated, progresses to a chronic memory disorder termed Korsakoff syndrome.

Prevalence: approximately 2%of people worldwide are affectedwith Korsakoff syndrome, themajority of whomaremen between

the ages of 30 and 70.

Symptoms: most prominently, patients with Korsakoff syndrome exhibit severe and chronic amnesia that is both anterograde and

extensively retrograde (see below). Thememory impairments are restricted to declarative memories, whereas implicit, spatial, ver-

bal, and procedural memories are relatively intact. Notably, there is no change in IQ. Patients also sometimes show confabulation,

delirium and disorientation, attention deficit, anger/agitation, visual changes, and unsteady gait.

Affected brain areas: structural imaging in patients with Korsakoff syndrome has identified prominent midline diencephalic le-

sions (includingmammillary bodies of the hypothalamus and anterior nuclei of the thalamus) and cortical atrophy. In all cases, there

are specific and bilateral lesions of the main hippocampal output pathway—the mammillo-thalamo-cortical tract (Papez circuit)

(see image below, adapted from Segal et al.162). Because patients can exhibit either anterograde or retrograde forms of amnesia,

or both, to disambiguate the etiologies driving these diverse conditions, several studies attempted a systematic correlation of brain

pathologywith the temporal nature of the patient’s amnesia. They found that while anterograde amnesia was often associated with

lesions of themammillary bodies, progressively increasing retrograde amnesia was associated with increasing pathology of the AT

and cortex (see image below, based on Kopelman,158 Kopelman et al.,159 Verfaellie et al.,160 and Fama et al.161). Notably, patient

studies involving bilateral thalamic lesions, including those from not only Korsakoff syndrome158 but also infection, stroke, or

TBI43,163–165 have identified a resulting retrograde amnesia, which can occur without anterograde amnesia, extending back several

decades, with cortical atrophy further extending this time frame. These patient studies, together with emerging mechanistic

studies in rodents, support a model where memory representations are continuously reorganized across brain circuits endowed

with progressively longer time constants for long-term stabilization (Figure 2).
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emotional, etc., use the thalamo-cortical highway as a general

pathway for subcortical-to-cortical memory stabilization. More

broadly, cross-talk between thalamic50,175 and limbic91,176,177

circuits will be a requisite area of investigation which may offer

convergent, redundant, or sequential routes of memory consol-
8 Neuron 112, April 3, 2024
idation, to enhance the integration or robustness of long-term

memory representations, respectively.

As thalamo-cortical interactions stabilize cortical representa-

tions, there are concurrent reorganization of cortical-cortical net-

works37,52,77,91 that require further study. Furthermore, it is still
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unclear why cortical reorganization is such a slow process, but

clues may come from observing brain activity patterns during

sleep and offline periods, which are likely to contribute impor-

tantly to memory stabilization.178–182 For instance, do sharp-

wave ripples183 pass through the thalamus, and if so, might

they reinforce learned associations and support hippocampal-

to-cortical interactions during sleep?184 In particular, sleep spin-

dles in the thalamic reticular nuclei have been suggested to sta-

bilize cortical learning by coupling hippocampal ripples with slow

oscillations in cortex during sleep.180,184 Additionally, homeo-

static processes during sleep185 may also help to explain why

the process of cortical consolidation and stabilization is so

slow. Under this scenario, cortical synaptic weights that are

initially strengthened from learned experiences during waking

hours are weakened during sleep, in order to achieve homeo-

static balance in the excitability of networks. If so, cortical

learning is constantly working against itself in a competitive

fashion and only those learned associations that are salient

enough (or reactivated frequently) will resist overnight synaptic

pruning.186 Thus, as AT works to stabilize cortical representa-

tions, marginal differences in the strengths of thalamo-cortical

and cortical-cortical synapses may eventually become magni-

fied over repeated bouts of sleep to sculpt stable ensembles

representing longer-term memories. Ultimately, a more compre-

hensive understanding of the brain-wide process of memory

reorganization and consolidation will require continued innova-

tion in behavioral models, large-scale multi-area brain record-

ings paired with perturbations during both online and offline pe-

riods, and theoretical frameworks that bridge multiple time

constants toward information stabilization in the brain.

DISCUSSION

The HPC has long been at the center of memory research, and

perhaps rightfully so. However, with increasing methodological

capabilities to observe andmanipulate brain-wide neural activity,

our appreciation for memory as a dynamic and distributed pro-

cess is also evolving. Here, reviewing historical and emerging

work in the field, we propose a model in which memories are

initially formed in HPC, but progressively reorganize and stabilize

via thalamus to cortical circuits (Figure 2). We suggest that as

initial memory representations form in HPC, parallel traces

emerge in frontal cortex to provide routes of access for

memory recall, and as they mature further, they require

active and continuous stabilization, initially via limbic circuits (en-

torhinal-hippocampal input) then via diencephalic circuits

(thalamic input), and perhaps still others, as eventually memories

become independent ofHPCanddependent on amature cortical

representation (Figures 2A–2C). A key feature of this model is

that, as time progresses, memory representations are passed

on to distinct circuits (entorhinal-hippocampal; hippocampal-

thalamic; thalamo-cortical; cortical-cortical), each of which

have progressively longer time constants (Figure 2D). While mul-

tiple time constants can be embedded in the same circuit, the

adaptive value of reorganizing memory representations across

distinct, progressively slower, andmore robust, circuits is the op-

portunity to filter, forget, update, or reorganize in the process of

committing to long-term storage. Such subcortical-to-thalamo-
cortical loops may be common motifs for consolidation of not

just episodicmemories, but also of perceptual, emotional, ormo-

tor (i.e., striatal-thalamo-cortical) memories.

Separable brain circuits with progressively longer timescales

of information storage also offers the opportunity to explore

the underlying molecular and cellular properties that endow

these circuits with diverse and extended time constants. For

instance, decades of pioneering molecular work across species

has established the importance of protein synthesis in extending

synaptic time constants from hours to days.187,188 More specif-

ically, activation of the transcription factor CREB is sufficient to

convert a short-term memory, i.e., only 1 h of synaptic facilita-

tion, to a long-term memory, i.e., with synaptic facilitation per-

sisting for at least 72 h.189–191 Therefore, similar to how transcrip-

tional programs scale synaptic time constants in HPC, the

recruitment of still additional molecular programs operating on

longer time constants may dictate the progressively longer time-

scales of information storage across thalamic and cortical net-

works. Such studies may offer pressing mechanistic insights

into long-held assumptions about why the entorhinal-hippocam-

pal system is a rapid but transient learning and memory circuit,

while the cortical network may be a slower but more robust

and longer lasting repository.3

As we further our understanding of the continuously evolving

nature of memory representations in the brain, there may be op-

portunities for targeted cell-type and circuit-specific therapeutic

interventions. For instance, in the case of Alzheimer’s disease,

regardless of the cause of the symptoms or site of pathology,

it may be more therapeutically promising to boost access to

memories (recall pathways via frontal cortex) or to help make ex-

isting memories more robust (consolidation pathways via

mammillo-thalamic tract), than to enhance memory formation

pathways (entorhinal-hippocampal circuits). Moreover, while ex-

isting brain stimulation methods (DBS, TMS, ECT, and TUS) may

appear too crude to lack the specificity required to enhance

memory recall, the hope is that broad excitation in the correct cir-

cuit can leverage learned differences in synaptic strengths, albeit

weakened or degenerating, to boost information flow along

specified synapses. Indeed, DBS in patients have been most

successful in improving memory when targeting the fornix (hip-

pocamus-to-mammillo-thalamic tract),192–195 with more variable

success rates when targeting the ENT or HPC196–198 though

much of the observed variability may also be due to differences

in stimulation protocols, time of intervention, advanced stage of

disease, or other patient-specific attributes. Thus, there remains

much to be understood about the underlying mechanisms of

DBS, but continued research spanning rodent and human pop-

ulations offers promise in refining targeted patient-specific inter-

ventions for memory and cognitive improvement in disease.

In this perspective, our goal was to begin developing models

to understand the gradual evolution, reorganization and stabili-

zation of memories after their initial formation in the HPC. In do-

ing so, we chose to highlight the contributions of the AT and PFC

to this evolution, given their prominent contributions to memory

processing over progressive timescales as observed in the ro-

dent and human literature. However, we do not mean to suggest

that these circuits are acting in isolation, which is certainly not the

case, but rather to spotlight potential outsized contributions of
Neuron 112, April 3, 2024 9
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these circuits to an evolving memory representation. Indeed,

other brain regions, including non-neuronal cell types and the

role of newborn neurons,199–201 have functional contributions,

which will add to our understanding of a broadly distributed

memory representation that requires coherent interaction for

successful processing. There may also be different anatomical

routes of consolidation for different types of memories, i.e.,

spatial vs. contextual vs. perceptual vs. motor.

As we explore the complexities of redundant and highly inter-

connected functional pathways for memory, it will be important

to proceed cautiously—large-scale brain recordings can provide

the impression that memory-related signals appear everywhere

in the brain, while strong perturbations involving whole gene or

whole circuit knockoutmay lead to unusually strong phenotypes,

precluding subtle but important differences between circuits and

the identification of critical nodes in a complex network. While

these are challenges ubiquitous in neuroscience and biology,

one approach may be to systematically titrate the strength of

brain perturbations and assess their effects on downstream

brain circuits and behavior to build confidence in their specificity

and effect size. Another solution is to leverage the diversity of

natural and outbred rodent and human populations to systemat-

ically link variation in circuit physiology with variation in behavior,

at scale. These approaches can thus circumvent all-or-none in-

vestigations while harnessing the subtle titrations and network

dependencies that exist in natural populations to disentangle

critical nodes of a complex network. This will help identify key

circuits with specific and outsized contributions to memory pro-

cessing at various stages in the evolution of a memory and also

reveal a ‘‘range of solutions’’ and thus core principles, for mem-

ory processing across timescales. The coming decade promises

to be bright.
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