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Abstract
Summary

Learning requires the ability to link actions to outcomes. How motivation facilitates learning
is not well understood. We designed a behavioral task in which mice self-initiate trials to
learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal
cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we
found that ACC neural activity was consistently tied to trial initiations where mice seek to
leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted
over consecutive unrewarded cues until reward associated cues were reached, and was
required for learning. To determine how ACC inherits this motivational signal we performed
projection specific photometry recordings from several inputs to ACC during learning. In
doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC) -to-ACC
projections as mice received unrewarded cues, which continued ramping across consecutive
unrewarded cues, and finally peaked upon reaching a reward associated cue, thus
maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed
these neural correlates of motivation, and further delineated separate ensembles of neurons
that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC
maps out task structure to convey an extended motivational state to ACC to facilitate goal-
directed learning.
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were state-of-the-art. The manuscript would further benefit from theory-driven
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calcium imaging results. These results will be of interest to those interested in cortical
function, learning, and/or motivation.
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Introduction

Animals must sustain an extended motivational state to achieve goal-directed learning. Imagine
being hungry in the middle of a busy metropolis with no cellphone battery and no way of
searching for the nearest restaurant. The feeling of hunger provides motivation to search for
restaurant signs, scan menus, and contemplate what type of food to eat. If it is dinnertime and
many restaurants are full, this motivational state (hunger) may persist for hours until a restaurant
is selected. Thus, an animal’s ability to carry out novel actions based on its desired goals is
commonly referred to as goal-directed learning. This learning is of a more deliberate, informed
nature than habitual learning, as they are sensitive to the current value of outcomes and can lead
to a novel sequence of actions for a desired outcome1     –3     .

Goal-directed learning often requires the ability to maintain an extended motivational state even
in the midst of distracting and competing external variables4     ,5     . This function has been long
proposed to be carried out by the prefrontal cortex (PFC), as patients with PFC lesions struggle to
perform tasks that require maintaining a motivational and goal-directed state, in the midst of
competing sensory information, such as the Stroop task or the Wisconsin Card Sorting Task 6     –
11     . In particular, the anterior cingulate cortex (ACC) has been implicated in action selection over
long timescales that are influenced by a variety of motivational factors, such as the value and
effort required for each outcome5     ,12     –16     . For instance, when animals are given two choice
options: one in which high-effort leads to high-rewards, and one in which low-effort leads to low-
rewards, animals learn to exploit the high-effort, high-reward option17     ,18     . Impairments to the
ACC results in animals failing to accurately allocate motivation towards strategies that maximize
reward19     ,20     . Single-unit recordings from ACC have shown that neurons encode for choices
that require effort with a higher-payoff, giving support for the hypothesis that this region is
important for action-outcome associations and allocating resources for learning and for the
maximization of reward over long timescales13     ,21     –23     . While the precise functions of ACC are
still debated, its role in goal-directed learning is widely accepted5     ,22     ,24     –26     .

To provide deeper mechanistic insight into how ACC encodes an extended motivational state to
facilitate goal-directed learning, we sought to track how animals learn to adjust their behavior
over days-long timescales to maximize reward when cue-reward contingencies change. We
designed a task in which mice self-initiate trials and learn to associate cues with reward. Through
neural activity recordings during behavior, we found that ACC neural activity was consistently
tied to trial initiations where mice seek to leave unrewarded cues to reach a rewarded cue.
Subsequently, by recording neural activity from inputs to ACC we identified a ramp in bulk activity
in orbitofrontal cortex (OFC)-to-ACC projections as mice continuously existed unrewarded cues,
peaking when they finally reached a rewarded cue, thus tracking an extended motivational state.
Finally, cellular resolution imaging of OFC-to-ACC neurons identified populations of neurons that
sequentially tile the observed bulk neural activity ramp across un-rewarded cue presentations. In
particular, neurons that preferentially encoded reward cues, before learning, began to code for
un-rewarded, cues after learning, including the motivation to exit these rooms to reach more
reward-associated cues. Taken together, we identified a mechanism by which OFC neural activity
ramps map out task structure and conveys an extended motivational state to ACC to enable goal
directed learning.

https://doi.org/10.7554/eLife.93983.1
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Results

ACC contains neural correlates of motivation during learning
We began by designing a learning task in which mice self-initiate trials and, upon brief cue
exposure (an olfactory and auditory cue), learn to stop to collect a water reward (Figure 1A,B     ;
S1A     , Methods). We implemented this task in a head-fixed setting to enable hundreds of trials
per session, and millisecond precision in tracking stimulus delivery and behavioral responses
(Figure 1A     ). We used “time to initiate trials” as the primary measure of motivation, and “total
reward obtained” as the primary measure of learning. Due to the self-paced nature of the task
(Figure 1B,C     ), we found variation between our mice in how quickly they initiated trials and
how many rewards they received per minute (Figure 1C     ). As expected, the faster mice initiated
trials, the more rewards they obtained per minute, providing a strong correlation between
motivation and learning (Figure 1D     ).

https://doi.org/10.7554/eLife.93983.1


Josue M. Regalado et al., 2024 eLife. https://doi.org/10.7554/eLife.93983.1 4 of 34

https://doi.org/10.7554/eLife.93983.1


Josue M. Regalado et al., 2024 eLife. https://doi.org/10.7554/eLife.93983.1 5 of 34

Figure 1.

Neural activity in ACC signals a motivational state to obtain reward

(A) Schematic of virtual reality experimental setup and trial structure. A mouse initiates a trial by running to trigger

the onset of cues (olfactory and auditory). After cue onset, a mouse stops to collect a water reward, which ends the

trial (see Methods).

(B) Representative traces of speed and licks from one mouse during a session, with shaded portions corresponding

to when cues are on. Red arrows correspond to periods when mice are running to trigger cue onset or stopping to

trigger water delivery. Black arrows correspond to sections of a session where we can quantify time to initiate trials,

initiation speed, cue stops, and rewards.

(C) Quantification per mouse of time to initiate a trial (far left; seconds), initiation speed (left; cm/s), % trials in which

a stop occurred during cue presentation (right), and rewards received per minute. Individual data points shown

(N=12 mice).

(D) Scatter plots of the mean time (s) to initiate a trial plotted alongside rewards received per minute per mouse

(N=12 mice). Individual data points shown, with a best fit line, represented by the solid line in the figure. r2=0.8675

and p<0.0001 are determined by linear regression.

(E) Left: bulk neural activity recording experimental design. GCaMP6f was injected into the anterior cingulate cortex

(ACC) and neural activity was recorded on a fiber photometry setup (see Methods). Right: Brain histology from a

representative mouse showing DAPI in blue, GCaMP6f in green and photometry cannula implantation in ACC (dotted

white lines). Scale bar: 1mm.

(F) Top: Trial average plots of ACC activity (z-scored dF/F) and speed (cm/s) aligned to reward onset. Data are mean

(solid line) ± s.e.m (shaded area). Bottom: Relative frequency plots of the time (s) for ACC dF/F or speed to rise above

1 std or 1 cm/s during rewards, respectively (N=105 trials across 12 mice). *p<0.05, paired t-test between time to rise

(s) between ACC and speed. Data is the frequency of values across time.

(G) Same as F, but for trial initiations. (N=510 trials across 12 mice).

(H) Injection strategy for DREADDS-based chemogenetic inhibition of ACC during self-paced task. Coronal section

from an animal virally injected with AAV1-Cam-Kii-hM4D(Gi) in ACC. DAPI is shown in blue and hM4D(Gi) in red. Scale

bar: 1mm.

(I) Representative traces of speed and licks from one mouse during the task on a day with saline (top) or CNO

(bottom) administration 45 minutes prior to a session, with shaded portions corresponding to when cues are

presented.

(J) Left: Quantification of time (s) to initiate trial (left) across saline and CNO sessions in mCherry-control mice (N=188

trials across 6 mice) and hM4D(Gi)-DREADDs mice (N=215 trials across 4 mice). Right: same as left but for rewards

received per minute in mCherry-control mice (N=60 minutes across 6 mice) and hM4D(Gi)-DRE-ADDs mice (N=40

minutes across 4 mice). p=0.8707 for mCherry and *p<0.05 for hM4Di (time to initiate), p=0.2073 for mCherry and

*p<0.05 for hM4Di (rewards per min), unpaired t-test between saline and CNO sessions per group. Data are mean ±

s.e.m.

The anterior cingulate cortex (ACC) has been classically implicated in motivation and maximizing
rewards, so we posited that ACC would contain motivation-related neural activity patterns in our
task5     ,27     ,28     . To test this hypothesis, we injected AAV1-CaMKII-GCaMP6f into the ACC and
implanted fiber-optic cannulas to record bulk neural activity in ACC during behavior (Figure

https://doi.org/10.7554/eLife.93983.1
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1E     ). We observed strong neural responses in ACC that were tuned to reward delivery and trial
initiations (Figure 1F-G     ). Notably, the ACC neural signal precedes speed onset in both cases,
suggesting that ACC is not tracking speed but rather the motivation to initiate trials (Figure
1F,G     ; Figure S1B     ). To determine whether these motivation-related signals in ACC were
required for learning, we performed hM4D(Gi)-based chemogenetic inhibition of ACC during a
session of Clozapine N-oxide (CNO) injection (ACC inhibition session) versus a session of saline
injection (control session) (Figure 1H,I     ). We found that ACC inhibition caused mice to have a
significant increase in time to initiate trials (Figure 1I     ), which also resulted in a decreased
number of rewards received per minute (Figure 1J     ). Furthermore, we found a small, but
significant, decrease in speed during trial initiation (but not overall trial speed), suggesting that
ACC inhibition might also impair vigor of movements during trial initiations (Figure S1C     ). Thus,
we developed a self-paced behavioral task where mice learned cue-reward contingencies, and
identified motivation-related signals in ACC that were required for learning and reward
maximization.

ACC contains neural correlates of
extended motivation during learning
We next sought to increase the motivational demand during learning. We thus extended our task
by training mice to learn two sets of cue-outcome relationships, where one cue-set (olfactory +
auditory) is associated with a sucrose water reward (hereafter referred to as “R” cues), whereas
the other cue-set is associated with no reward (“N” cues). Since mice have been shaped to stop
during cue presentations (Figure 1     ), it is now effortful for them to learn to continue running
through the N cues so that they can reach more R cues, and thus maximize their total rewards in a
session. Thus, motivation is assessed not only by “time to initiate trials after R cues”, as before, but
now also the more effortful measure of “time to initiate trials after N cues” (Figure 2A     ; see
Methods). We measured overall learning through differences in their lick rates and speed during
presentations, expecting progressive suppression of licking and increases in speed in the N cues
compared to the R cues across days. Interestingly, we found that mice learned to suppress licking
in the N cues (Figure 2A     ; red arrows on day 2) much earlier than learning to increases speed in
N cues (Figure 2A     ; red arrows on day 4; Supplementary Video 1). Across the cohort, on
average, this increase in speed during N cues began as early as day 3, after they had learned to
suppress their licking (day 2), as determined by speed and stop discrimination index (stop DI: % of
stops in N – R / all trials), (Figure 2B,C     , S2A     ; see Methods). Finally, there was also a significant
correlation between stop DI and rewards obtained per minute, confirming that the development
of this behavioral strategy is tied to reward maximization within a given training session (Figure
2D     ).

We next searched for neural correlates of motivation by recording bulk neural activity in ACC as
mice performed this task, and aligning neural responses to behavioral frames, focusing on periods
when mice learn to run during N cue presentations. As before (as in Figure 1     ), in this two cue-
outcome relationship task, we again found that ACC continued to be active during reward delivery
and during trial initiations (Figure S2B,C     ). Additionally, however, in this task we found that ACC
began to significantly increase its activity, specifically during N cues, as early as T3, as mice
exhibited a learned motivation to leave N cues to reach more R cues (Figure 2B-D     ). As a further
confirmation of this result, we investigated ACC’s activity during extended motivation across two
consecutive N cues and found that ACC activity continued to remain high from the initial N cue
presentation until an R cue was reached (Figure 2E     , S2D     ). These neural responses, and in
particular the dF/F difference in N vs R cues, positively correlated with the amount of reward
obtained per minute, linking motivation related ACC activity to overall learning (Figure 2D     ).
Importantly, in all cases, on a trial by trial basis, the neural signal preceded the behavioral ramp in
speed (Figure 2E     ), and was present even if we restricted our analyses to cue presentations in
which mice stopped (Figure S2E     ), suggesting a motivational rather than motor response. To
further confirm this dissociation, we passively presented both sets of cues to the mice at the end of

https://doi.org/10.7554/eLife.93983.1
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Figure 2.

Neural activity in ACC scales to match an increased motivational state during learning

(A) Top: Schematic of training where mice learn to associate stopping to one set of cues with no water reward (”N”) or with
water reward (”R”). Bottom: Representative traces of speed and licks from one mouse during a session on Training Day 2 and
Day 4, with shaded portions corresponding to when a reward cues (R, blue) or no-reward cues (N, orange) is presented. Red
arrow denotes the suppression of licks on Day 2, and rise in speed during no-reward cues on Day 4.
(B) Trial averaged speed (cm/s; top), lick rate (Hz; middle) and ACC activity (dF/F z-scored; bottom) aligned to cue
presentation across day 2 and 4 of training, separated by reward and no-reward cues (blue vs orange). Black arrow signifies
rise in speed after no-reward cue presentation. N=12 mice. Data are mean (dark line) with s.e.m. (shaded area).
(C) Quantification of average cue speed (cm/s; top), lick rate (Hz; middle) and ACC activity (dF/F z-scored; bottom) across
training, separated by reward and no-reward cues (blue vs orange). N=12 mice in each group, data are mean ± s.e.m.
*p<0.05, paired t-test between reward and no-reward.
(D) Scatter plots of rewards per minute vs stop discrimination (top), lick discrimination (middle), or dF/F difference (bottom)
for each mouse through-out training (N=120 data points, 12 mice per each of 10 days). Data are individual points with best fit
line. r2 and p values are shown, as determined by linear regression.
(E) Top: Trial averaged speed (cm/s) and ACC activity (dF/F z-scored) aligned to cue presentation across 3 trials consisting of a
reward, no-reward, and reward cue (RNR). Bottom: Trial averaged ACC activity (dF/F z-scored) aligned to cue presentation
across 4 trials consisting of a reward, no-reward, no-reward and reward cue (RNNR). Right: Quantification of average cue dF/F
activity across RNR and RNNR trial sequences. N=12 mice. *p<0.05, one-way repeated measured ANOVA with post-hoc
Tukey’s multiple comparison test. Data are mean (dark line) with s.e.m. (shaded area) or data are mean ± s.e.m (right).
(F) Top: Injection strategy for stGtACR2-based optogenetic inhibition of ACC during training. Middle: Brain histology from a
representative mouse showing DAPI in blue, stGtACR2 in red and photometry cannula implantation in ACC. Scale bar: 1mm.
Bottom: optogenetic inhibition was targeted to days 1-6 of training and mice were allowed to continue training for days 7-10.
(G) Left: Trial averaged plots of speed (cm/s) aligned to cue entry on T6 for mCherry controls and GTACR inhibition mice,
separated by reward or no reward cues. Right: Quantification of mean speed during cue presentations. N=8 mice for
mCherry, 4 for GTACR early inhibition. *p<0.05, paired t-test.
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each training session. As expected, mice did not develop the motivation to run out of N cues
(Figure S2F     ), and accordingly, the ACC neural activity was no longer different between N and R
cues. These results together suggest that ACC encodes a motivation signal to initiate trials, and in
particular corresponds to the behavioral measure of running during N cues to reach more R cues,
thus facilitating goal-directed learning.

To test whether these motivation-related signals in ACC are required for learning, we expressed
the inhibitory opsin stGtACR2 bilaterally in ACC and delivered light selectively when the mouse
received R or N cues, for the first 6 days (“early”) or last 4 days (“late”) of training (Figure 2F-G     ,
S2H     ). We found that early ACC inhibition prevented mice from learning to run out of N cues,
even though they still learned to suppress their lick rates (Figure 2G     , S2G     ). Late ACC
inhibition had no effect on speed or lick rate behavior, as mice continued to run out during N cues
while inhibition occurred, suggesting ACC activity does not broadly suppress speed (Figure
S2H     ). All together, we identified an extended motivation signal in ACC that is required for
learning and reward maximization.

Neural activity in orbitofrontal projections
ramps until rewards are reached
The ACC receives projections from disparate regions across the brain that could facilitate the
integration of value, internal state, and multisensory information, so we sought to identify how
afferent projections may convey motivational signals to ACC during learning29     . We injected
rgAAV-hSyn-Cre into ACC and injected cre-dependent GCaMP6f in the orbitofrontal cortex (OFC),
anteromedial thalamus (AM), basolateral amygdala (BLA), locus coeruleus (LC), and implanted
optical fibers above each region to record neural activity during learning in this task30      (Figure
3A     ). We first characterized whether the previously observed ACC neural responses during
reward delivery and trial initiations were present in any of the inputs to ACC (Figure S3A     ). We
found that even before learning all projections responded significantly to rewards, and most
(OFCACC, AMACC, and LCACC) increased their activity in anticipation of trial initiations (Figure
S3A     ). Thus, motivation-related signals were broadly present in various projections to ACC.

We then searched for motivation-related neural responses that were specifically tied to learning.
To do so, we aligned neural responses to trial initiations specifically during N cues, as mice learned
to leave N cues to reach more R cues. We found that both OFCACC and AMACC had higher baseline
activity during trial initiations after no-rewards (Figure S3C-D     ). To further understand this
higher activity after no-rewards we analyzed sequences of “RNR” trials which contained reward,
no-reward, and reward cues (Figure 3B     ). OFCACC and AMACC activity began rising during the N
cue presentation and continued rising until an R cue was reached (black dotted arrow; Figure
3B     ). We quantified this motivational signal as a difference in pre-cue activity between N and R
cues in RNR trial sequences across days and found that they emerged at the time of learning (∼T3)
and closely tracked performance of the learned behavior (T3-T6) (Figure 3B     ). To further build
confidence in these results, we asked whether this continuous rise in OFCACC activity in RNR
sequences would be further extended in RNNR sequences. Indeed, OFCACC activity continued
ramping across two consecutive N trials, exhibiting higher pre-cue activity upon entering an R cue
after two versus one N (black dotted line, Figure 3C     ).

To more directly determine whether this motivational ramp signal in OFCACC is tied to learning,
we separated our mice into two groups, one that learned the task (“Learners”, stop DI > 0.5 for at
least 3 consecutive days) and one that did not learn (“Non-Learners”) (Figure 3D     , S3D     ). The
Learners reached a high DI by T6, which persisted throughout the rest of training, whereas the
“Non-Learners” only reached a significantly higher DI by T10 (Figure 3D     ). Both subsets of mice
still learned to discriminate with licking at comparable rates (Figure S3E     ). When we compared
OFCACC activity in a RNNR sequence of trials, we found that only Learners exhibited a significant
ramp in neural activity from the first N cue to the final R cue presentation, which emerged

https://doi.org/10.7554/eLife.93983.1
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Figure 3.

Mice with extended motivational states during learning display neural activity ramps in OFC

(A) Injection strategy and fiber-based photometry setup to record bulk GCaMP6f of projections to ACC from OFCACC
(orbitofrontal cortex), AMACC (anteromedial thalamus), BLAACC (basolateral amygdala), or LCACC (locus coeruleus).
Representative traces for a single mouse showing traces for each region dF/F, speed, and licks. Shaded portions are shown
corresponding to when a reward cues (R, blue) or no-reward cues (N, orange) are presented.
(B) Left: trial averaged bulk GCaMP6f dF/F of ACC, OFCACC, AMACC, BLAACC, and LCACC during a sequence of trials on T6
including reward, no-reward, and reward cues (RNR). Black arrows denote the rise in pre-cue activity from N cue to the
following R cue in the RNR sequence. Right: quantification of pre-cue activity for the N cue and following R cue. Data are
mean (solid line) ± s.e.m (shaded area). N=19, 12, 5, 4 mice, data are mean (solid line) ± s.e.m (shaded area), *p<0.05, paired t-
test between N vs R cues.
(C) Left: trial averaged bulk GCaMP6f dF/F of OFCACC during a sequence of trials including reward, two no-reward, and
reward cues (RNNR). Red arrows denote the rise in pre-cue activity from first N cue to the last R cue in the RNNR sequence.
Right: quantification of pre-cue activity for the first N cue, second N cue and last R cue. Data are mean (solid line) ± s.e.m
(shaded area). N=19 mice, data are mean (solid line) ± s.e.m (shaded area), *p<0.05, one-way repeated measures ANOVA with
post-hoc Tukey’s multiple comparison test.
(D) Left: speed (cm/s) for “Learner” (black; reached a DI > .5 for 3 consecutive days) or “Non-Learner” (red) mice on training
day 6 aligned to no-reward cue onset. Middle: discrimination index for each group of mice throughout training. Right: speed
during reward and no-reward cues for “Learner” mice. N=7 (“Learner”) and 9 (“Non-Learner”) mice. Data are mean (solid
line) ± s.e.m (shaded area), *p<0.05, unpaired t-test between Learner and Non-Learner DI (middle), paired t-test between
reward and no-reward cues (right).
(E) Left: trial averaged bulk GCaMP6f dF/F of OFCACC during a sequence of trials including reward, two no-reward, and
reward cues (RNNR). Black arrows denote the rise in pre-cue activity from first N cue to the last R cue in the RNNR sequence.
Red arrows denote the absence of this ramp in Non-Learner mice. Right: Quantification of pre-cue activity for the first N cue,
second N cue and last R cue. Data are mean (solid line) ± s.e.m (shaded area). N=7 (“Learners”) and 9 (“Non-Learner”) mice,
data are mean (solid line) ± s.e.m (shaded area), *p<0.05, one-way repeated measures ANOVA with post-hoc Tukey’s multiple
comparison test.
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coincidental with behavioral learning and persisted for the remaining days of training (Figure
3E     ). Together, we identify projection activity in OFC that ramps across N cues until an R cue is
reached that is specifically tied to the development of a learned goal-directed behavior.

Orbitofrontal projection neurons tile
unrewarded trials until rewards are reached
Given that we identified a ramp in OFCACC bulk neural activity during NNR sequences (Figure
3     ), we sought to determine whether a single persistently active population or a sequence of tiled
neurons underlies this ramp. We thus performed real-time cellular resolution imaging of OFC
projections to ACC by injecting rgAAV-hSyn-Cre into ACC and cre-dependent GCaMP6f in OFC
(Figure 4A     ). We implanted a GRIN lens above OFC and imaged the region under a 2-photon
microscope as mice performed the learning task (Figure 4A     ). We focused our analysis on days
where behavioral learning emerged (Figure 4B     ), and on NNR trial sequences. We found
individual neurons that were uniquely active across the first N, second N, or R cue, thereby tiling
the sequence of NNR trials (Figure 4C-D     ). We further found that an increasing number of
neurons were active along the sequence of NNR trials and most prominently before learning
(Figure 4E-F     , S4A-C     ). Thus, collectively, as an ensemble, these neurons ramp consecutive N
cues and peak upon reaching R cues, providing underlying mechanism for the previously
observed photometry results.

https://doi.org/10.7554/eLife.93983.1
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Figure 4.

Orbitofrontal cortex projection neurons tile sequences of trials with no-rewards

(A) Injection strategy (top left), histology (top right; scale bar, 1mm) and z-projection images of two-photon

recording (bottom left; mean over time; scale bars, 200 μ m) of GCaMP expressing OFC projection neurons with GRIN

implants. Bottom right: sequence of trials with z-scored dF/F for individual neurons, with shaded portions

corresponding to when a reward cues (R, blue) or no-reward cues (N, orange) are presented. Red arrow denotes a

dF/F transient occurring after 2 consecutive N cues.

(B) Stop (black) or lick (grey; see methods) discrimination index on the first day stop DI reaches > 0.4 (”after”) and

the two previous days (”before” and “middle”). N=5 mice.

(C) Representative neurons with tunings (std > 0.75 for 3 seconds prior to or after cue presentation) to separate cues

in an NNR trial sequence. Trial averaged activity of a N (top), NN (middle), and NNR (bottom) neuron with heat map

showing individual trial responses.

(D) Quantification of neurons tuned to separate cues within an NNR trial sequence and their activity to all other cues.

N=17 (N), 18 (NN), 32 (NNR) cells out of 115 cells in total. *p<0.05, one-way repeated measures ANOVA with post-hoc

Tukey’s multiple comparison test.

(E) Schematic of OFCACC bulk activity based on Figure 3      results and potential single neuron findings that tile a

sequence of trials with two no-rewards followed by a reward cue presentation (NNR).

(F) Percentage of neurons tuned to different cues in an NNR trial sequence before (top) or after (bottom) training.

N=5 mice. *p<0.05, one-way repeated measures ANOVA with post-hoc Tukey’s multiple comparison test.

(G) Ensemble average plots of neurons tuned to R cues after 2 consecutive N cue presentations (NNR cells) before

learning (top) and their activity after learning (bottom). Black arrows denote the rise in activity prior to R cues after

learning. N=18 NNR cells out of 81 cells tracked across days.

(H) Quantification of transient time (s) since R cue onset for neurons tracked across days. N= 132, 170 transient

events before and after learning across 18 NNR cells and 105, 59 transient events before and after learning across 12

NR cells. *p<0.05, unpaired t-test.

(I) Left: Injection strategy for stGtACR2-based optogenetic inhibition of OFCACC during training. Optogenetic

inhibition was targeted to training for 6 days. Right: Brain histology from a representative mouse showing DAPI in

blue, stGtACR2 in red and photometry cannula implantation in ACC. Scale bar: 1mm.

(J) Left: mean animal speed (cm/s) aligned to cue zone entry after no-reward on T6 for mCherry control or GtACR

mice. Black arrow signifies lack of speed increase during N cues. Right: quantification of mean change speed in cue

zone after no-reward, assessed separately for each cue presentation. N=10 mice for mCherry and 13 mice for GtACR,

*p<0.05, paired t-test.

(K) Schematic of reward-responsive OFC projection neurons becoming increasingly active during no reward cues that

precede reward cues over days.

To determine how these NNR ensembles facilitate learning we tracked the same population of
neurons “before” and “after” learning (Stop DI > 0.4; Figure 4G     , S4D     ). We identified an
ensemble of neurons that were uniquely responsive to R cues preceded by 2 N cues, before
learning, and characterized their responses after learning. Interestingly, these neurons were no
longer responsive to R-cue-onset but rather to pre-R-cue activity, which then became progressively
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more responsive to the preceding N-cue-onset, aligning with the learned behavioral transition of
mice leaving N cues to reach R cues (Figure 4G, H     ). To determine whether OFCACC activity
ramps were required for learning, we optogenetically inhibited these projections bilaterally and
delivered light only on R or N cues. We then specifically assessed whether previous trial history
affected behavioral responses on the current cue condition (Figure 4I, J     ). Interestingly, while
both mCherry control and OFCACC inhibition cohorts could increase their speed during N cues
following an R-cue, OFCACC mice were impaired in doing so if the N cue was followed by an N-cue
(Figure 4I, J     , S4E     ). Taken together, these data demonstrate that ensembles of neurons
progressively tile the OFC motivational ramp, and that the initial reward responsive neurons
become progressively linked to trial initiations during unrewarded cues thus effectively linking
actions to outcomes to maximize rewards (Figure 4K     ).

Discussion

In this study, we developed a self-paced cue-outcome learning task to determine how mice extend
their motivational state to maximize reward over long timescales. We identify the ACC as broadly
critical to maximizing reward in our task, especially as mice learn to run out of unrewarded cues.
We found that upstream inputs to ACC from OFC sustain a ramp-like increase in activity through
consecutive unrewarded cues until mice reach rewarded cues. Cellular resolution imaging of OFC
projection neurons revealed ensembles of neurons that tile the motivational ramp, and a
progressive shift in ensemble tuning during learning such that neurons initially encoding for
reward become progressively linked to motivated actions, i.e., trial initiations to reach more
rewards. We therefore present a model where OFC contains neurons that increasingly link reward
to motivated behaviors, conveying a motivational ramp to ACC, to facilitate learning and reward
maximization (Figure 4E     , 4K     ).

The orbitofrontal cortex has been implicated in guiding adaptive, flexible behavior by signaling
information about future outcomes31     –35     . One view sees OFC’s function as encoding for the
value of the outcomes of events, with various neural correlates having been found for value-
guided behavior. Another view sees OFC’s function more as building a model of the causal
relationships between events, which may or may not entail value-assessments, into a cognitive
map 36     . Indeed, OFC neurons have been found to encode sensory-sensory associations even
prior to any kind of learning37     . A way to link both perspectives into a single account has been to
view value and a cognitive map as occurring along a spectrum, where inferring value onto
outcomes hinges upon a map that is created. We have found that mice learn to run out during N
cues to more quickly reach R cues, thereby acquiring more rewards over a training session. This
behavior can be viewed as both value-guided, as the mouse suppresses their lick rate during N
cues, and also requiring a mental model of the environment, as running occurs with the
expectation of reaching R cues in the future. Indeed, the pseudorandom trial structure ensures
that N cues will be presented no more than two times in a row, such that after two N cues an R cue
is guaranteed (see Methods). We thus parsimoniously position OFC as functioning in model-based
behaviors, and in the accurate planning of actions based on the learned transition structure of a
task38     .

A combined map of task space and value-information carried by OFC could be used to inform
downstream regions, such as ACC, for adjusting behavior. The ACC has been shown to carry
information necessary for switching or staying with current behaviors during decision-making
and learning in order to maximize rewards and minimize threats or punishments5     ,27     ,28     . We
posit that ACC reads information from OFC about task structure and value to perform
computations relevant to allocating behavioral control. We have seen this through our findings
that ACC is important for learned behaviors associated with maximizing rewards in our self-paced
learning task. We compare the decision to run during N cues to a foraging decision to leave a patch
to find alternative options, and ACC’s importance in the development of this behavior is
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reminiscent to signals previously described at the time a foraging decision is reached39     ,40     .We
found inhibition of ACC activity affected the development of running during N cues, effectively
diminishing an animals’ ability to strategy switch20     ,41     –43     .

Here we focused on learning as a systems-level process guided by top-down signals of task
structure, value, and behavioral control. A more synaptic-level approach into how ACC integrates
information from upstream regions during learning could reveal important micro-circuit
computations, structural changes associated with learning44     , and potential mechanisms
underlying seconds-long behavioral timescale learning rules 45     .

Materials and methods

Key resources table

Mice
All procedures were done in accordance with guidelines derived from and approved by the
Institutional Animal Care and Use Committees (protocol #22087-H) at The Rockefeller University.
Animals used were 8-10 weeks-old naive male C57BL/6J mice (Jackson Laboratory, Strain #000664)
at the time of surgery. Mice were group housed (3-5 per cage) with ad libitum food and water,
unless mice were water restricted for behavioral assays, in which case they were given 1 mL
water per day. Body weight was monitored daily to ensure it was maintained above 80% of the
pre-restriction measurement. Surgical procedures and viral injections were carried out in mice
under protocols approved by Rockefeller University IACUC and were performed in mice
anesthetized with 2% isoflurane using a stereotactic apparatus (Kopf).

Surgical Procedures
Puralube vet ointment was applied to the eyes and 0.2mg/kg meloxicam was administered
intraperitoneally using a 1mL syringe. Hair from the scalp was trimmed, and the area was
sterilized using povidone-iodine swabs and subsequently ethanol swabs. An incision covering the
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anteroposterior extent was made to allow access to the skull. Injection sites were accessed using a
dental drill which made 0.5mm holes through the skull. All virus was injected using a 35G beveled
needle in a 10ul NanoFil Sub-Microliter Injection syringe (World Precision Instruments) controlled
by an injection pump (Harvard Apparatus) at a rate of 100nl/min. After all viral delivery, an
additional 5-10 mins delay was applied to avoid backflush before slowly removing the injection
needle. Animals that required cannulas or GRIN lenses were implanted immediately following
viral injection. Following surgery, mice were allowed to recover in a single housed cage for up to
12 hours, and were given meloxicam tablets. Mice were typically housed for three weeks to allow
for adequate expression before behavioral testing or histology.

Viral injections

● In retrograde tracing experiments, mice were unilaterally injected in ACC (A/P +1.0, M/L,
±0.35, D/V -1.4) with rgAAV-CAG-tdT at a volume of 500 nl (1.0 × 1013 vg/mL).
● For fiber photometry experiments, 1ul of AAV1-CaMKIIa-GCaMP6f (UPenn Viral Core,
diluted to 5 × 1012 vg/mL) and rgAAV-hSYN-Cre (1.20 × 1013 vg/mL) was injected into ACC,
and AAV1-CAG-FLEX-GcaMP6f (5.0 × 1012 vg/mL) was injected into OFC (A/P: 2.5, M/L: ±1.0,
D/V: -2.5), AM (A/P: -0.75, M/L: ±0.5, D/V: -3.55), BLA (A/P: -1.23, M/L: 2.75, D/V: -4.7) and LC
(A/P: -5.45 M/L: ±0.85, D/V: -3.7). One week after virus injection, mice were unilaterally
implanted with 1.25 mm ferrule-coupled optical fibers (0.48 NA, 400 μm diameter, Doric
Lenses) cut to the desired length so that the implantation site is ∼0.2 mm dorsal to the
injection site.
● For cellular imaging, rgAAV-hSYN-Cre (1.20 × 1013 vg/mL) was injected into ACC and
AAV1-CAG-FLEX-GcaMP6f (5.0 × 1012 vg/mL) was injected into OFC.
● For optogenetic inhibition of ACC, AAV1-CaMKIIa-stGtACR2 (1 × 1013 vg/mL) was injected
into ACC bilaterally. For controls, AAV1-CaMKIIa-mCherry (7 × 1012 vg/mL) was injected.
● For chemogenetic inhibition of ACC, AAV9-CaMKIIa-hM4D(Gi) (1 × 1013 vg/mL) was
injected into ACC bilaterally. For controls, AAV9-CaMKIIa-mCherry (1 × 1013 vg/mL) was
injected bilaterally in either region.
● For optogenetic inhibition of OFC-ACC projections, rgAAV-hSYN-Cre (1.20 × 1013 vg/mL)
was injected into ACC bilaterally and either AAV1-hSyn1-SIO-stGtACR2 (1.50 × 1013 vg/mL)
or AAV9-hSyn-DIO-mCherry (9.0 × 1012 vg/mL) for controls was injected bilaterally into
OFC.

Cannula implants

One week after viral injections, mice undergoing photometry or optogenetic experiments were
implanted with fiber optic cannulas (Doric Lenses). For photometry, mice were unilaterally
implanted with 1.25 mm ferrule-coupled optical fibers (0.48 NA, 400 μm diameter, Doric Lenses)
cut to the desired length so that the implantation site is ∼0.2 mm dorsal to the injection site. For
optogenetics, mice were implanted bilaterally with 1.25mm cannulas (0.22 NA, 200um diameter,
Doric Lenses). In both cases, cannula implants were slowly lowered using a stereotaxic cannula
holder (Doric) at a rate of 1 mm/min until it reached the implantation site, 0.2 mm dorsal to the
injection site. In the case of bilateral AM optogenetic inhibition, one cannula was implanted at a
10-degree angle laterally to the skull in order to prevent stereotactic hindrance. Optic glue
(Edmund Optics) was then used to seal the skull/cannula interface and a custom titanium
headplate was glued to the skull using adhesive cement (Metabond).

GRIN lens implants

Immediately following viral injections, mice undergoing calcium imaging were implanted with
gradient-index (GRIN) lens(es). An incision covering the anteroposterior extent was made, and the
skin overlying the skull was cleared. The skull was then cleared and textured using a scalpel. Using
a dental drill, 1mm diameter holes were made at stereotactically determined sites of implantation.
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Site of drilling was immediately covered using chilled Ringers solution, and using a sterile 28 G ×
1.2” insulin syringe and low-pressure vacuum suction, the underlying dura was removed. GRIN
lenses (1.0 mm diameter, 4.38mm length, 0.5 NA from GRINTECH (NEM-1 00-25-1 0-860-5-0.5p))
were wrapped in a 1.25mm wide custom length stainless steel sleeve (McMaster, catalog #
5560K46) using optic glue, made to cover only the part of the lens held external to the brain. With
a 0.5mm burr (Fine Science Tools) attached to a stereotaxic cannula holder, the GRIN was slowly
lowered into the brain at a rate of 1mm/min, ending 0.2mm dorsal to the injection site. The skull
was constantly flushed with chilled 1× PBS. Every time the lens moved 0.8 mm more ventral, it was
temporarily retracted 0.4 mm dorsally at the same rate, before continuing down again. We found
this especially helpful to maximize the number of observed cells when imaging in deep regions.
The skull-sleeve connection was then sealed with glue, and further secured with adhesive cement.
A custom titanium headplate was glued to the skull using adhesive cement. Immediately following
surgery, mice were injected with 0.2mg/kg dexamethasone subcutaneously to reduce
inflammation.

Histology
Animals were deeply anesthetized with 5% isoflurane before transcardial perfusion with ice-cold
PBS and 4% paraformaldehyde in 0.1M PB. Brains were then post-fixed by immersion for ∼24
hours in the perfusate solution followed by 30% sucrose in 0.1M PB at 4°C. The fixed tissue was cut
into 40 µm coronal sections using a freezing microtome (Leica SM2010R), free-floating sections
were stained with DAPI (1:1000 in PBST), and mounted on slides with ProLong Diamond Antifade
Mountant (Invitrogen). Images were taken on a Nikon Inverted Microscope Eclipse Ti-E with a
4x/0.2 NA objective lens. Whole-slide-images were stitched with NIS-Elements imaging software
and further analyzed in ImageJ and MATLAB.

Virtual Reality System
We used a custom-built virtual reality environment, modified from a previously reported
version46     . In brief, a 200-mm-diameter styrofoam ball was axially fixed with a 6-mm-diameter
assembly rod (Thorlabs) passing through the center of the ball and resting on 90° post holders
(Thorlabs) at each end, allowing free forward and backward rotation of the ball. Mice were head-
fixed in place above the center of the ball using a headplate mount. Virtual environments were
designed in the virtual reality MATLAB engine ViRMEn47     . The virtual environment was
displayed by back-projection onto white fabric stretched over a clear acrylic hemisphere with a
14-inch diameter placed ∼20 cm in front of the center of the mouse. The screen encompasses
∼220° of the mouse’s field of view and the virtual environment was back-projected onto this
screen using a Vamvo Ultra Mini Portable projector. The rotation of the styrofoam ball was
recorded by an optical computer mouse (Logitech) that interfaced with ViRMEn to transport the
mouse through the virtual reality environment. A National Instruments Data Acquisition (NIDAQ)
device was used to send out TTL pulses to trigger the CMOS camera, laser for optogenetics, and the
various Arduinos controlling tones, odors, airpuff, lick ports. Additionally, the NIDAQ recorded the
capacitance changes of the lick port when licking occurred and the CMOS camera exposures to
align lick rate and neural recording/imaging to trial events.

Behavioral shaping
Starting approximately 3 weeks after surgery, mice were put on a restricted water schedule,
receiving 1 mL of water in total per day. Body weight was monitored daily to ensure it was
maintained above 80% of the pre-restriction measurement.

After a week of water deprivation, mice were habituated to the styrofoam ball for 2 days by
receiving their 1 mL of water per day in head-fixed condition. Then mice were put onto a linear
track (vertical gray bars) where water release was contingent on running a short time to trigger
the onset of cues (an odor and tone) where they received 5 seconds of water delivery. Over the
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course of a session, and in subsequent days, the duration needed to run increased. Once mice
could run on the ball for 2 seconds, we introduced a condition to stop during cue onset to trigger
water delivery. Over the course of a session, and in subsequent days, the duration needed to stop
increased. If a mouse took longer than 10 minutes to receive their 1 mL of water on a given day,
the duration needed to run and/or stop to get water was repeated on the following day until they
could reliably walk on the ball for water under 10 minutes. Once all mice from a cohort were able
to run for 1 second, stop during cues for 3 seconds, and complete at least 80% of initiated trials,
training began.

Behavioral task
In the final version of the task that was used during all experiments, mice ran down a virtual
linear track to trigger contextual cues used to predict the outcome they will receive (∼4ul of
sucrose water or no water) if they stop. At the beginning of the linear track, mice self-initiated
trials by running (speed > 10cm/s) down a virtual linear track for 1 second. Olfactory and auditory
cues would then be presented for 3 seconds. The auditory cues consisted of 5 KHz or 9 KHz tones
outputted by a thin plastic speaker (Adafruit) and olfactory cues consisting of ɑ-pinene or octanol
were diluted with mineral oil to 10% and released by a custom-built olfactometer. Both auditory
and olfactory cues were outputted by Arduino code under the control of ViRMEN code. The cues
for reward were a 5KHz tone and alpha-pinene while the cues for no-reward were 9KHz tone and
octanol. Outcome onset would happen under the condition that a mouse dropped their speed
below 10cm/s for at least 1 second before the end of the cues. If the mouse failed to stop for at least
1 second, they would be immediately placed at the start of the linear track and would need to run
for 1 second to trigger the next trial start. The outcomes consisted of free access to 10% sucrose
water presented by a lickometer (reward) or no water (no-reward), alongside another
presentation of contextual cues, for 3 seconds. Sucrose water output were controlled by Arduino
code under the control of ViRMEN code. After the outcome zone mice were transported to the
beginning of the linear track to start the next trial. The order of reward and no-reward cue was
pseudo-randomly predetermined through code so as to not lead to more than 2 of the same cues
presented in a row.

Performance in the task was assessed by average speed and average anticipatory lick rate (during
the 3 seconds of cue presentation) for all reward and no-reward trials in a given session. Prior to
training, mice were given a “pre-exposure” session where they were exposed to each set of cues,
with tap water given upon outcome trigger in both. They were then given 10 days of training
(referred to as T1-T10). Each mouse was given 15 minutes on the ball for each training session, and
supplemental water was given to each mouse if they failed to drink 1ml during a session.

Behavioral analysis
For behavioral experiments, we quantified several variables within a given session per mouse. We
determined how long it took for mice to initiate trials based on how long (s) it took for their speed
to be above 1cm/s for over 1 second after a reward, their speed (cm/s) during trial initiations, the
percentage of times they stopped (ie, their speed (cm/s) was below 1 for at least 1 second by the
3rd second after cue onset) after cue onset within a given session, and how many rewards they
received per minute (total rewards per session/minutes in a session). For analysis in Figure 1J     
we calculated time to initiate trial on a per trial basis, and rewards per minute on a per minute
basis.
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We also assessed learning by calculating a stop and normalized lick rate difference, which we
refer to as the stop and lick discrimination index (DI). The DI was calculated as follows:

A DI of 1 therefore indicates perfect discrimination, while a DI of 0 indicates chance performance.
For all sessions, stops were assessed by whether they triggered the reward or no-reward out
period of the trial (ie, their speed (cm/s) was below 1 for at least 1 second by the 3rd second after
cue onset) and lick rate was calculated in the window of time 3 seconds after the onset of the cues.
Repeated measures ANOVA with Tukey’s post hoc test was used to assess learning by comparing to
discrimination during pre-exposure. We separated out cohorts of mice in Figure 3      based on
how well they discriminated with stops. We determined “Learner” mice by seeing if their stop DI
reached above 0.5 for at least 3 consecutive days by Training Day 10, and “Non-Learner” mice as
those mice who did not.

Chemogenetic inhibition of ACC
For chemogenetic silencing experiments, we injected AAV9-CaMKIIa-hM4D(Gi) (or AAV9-CaMKII-
mCherry for controls) bilaterally into ACC. For a week prior to behavioral shaping, mice were
habituated to handling and intraperitoneal injections of saline. A solution of clozapine N-oxide
(CNO) was prepared at a concentration of 0.5 mg/mL, and mice were injected at a dosage of 5
mg/kg. Behavioral experiments were conducted 45 minutes after injection.

Optogenetic inhibition of ACC
Mice were injected with AAV1-CaMKII-stGtACR2 bilaterally in ACC, while control cohorts were
injected with AAV1-CaMKII-mCherry. Cannulas were implanted directly above the injection sites.
After three weeks, mice underwent shaping as described above, then moved onto training. For
inhibition during training, light from a 473nm laser (15 mW at fiber tip) was delivered through a
mono fiber optic patch cord for 3 seconds (cue zone followed by reinforcement zone) upon the
animal entering the cue zone, throughout the duration of training (∼15 minutes).

In Vivo Multi Site Photometry Recordings

Photometry Setup

A custom multi-fiber photometry setup was built as previously30      with some modifications that
were incorporated to increase signal to noise, detailed below. Excitation of the 470 nm (imaging)
and 405 nm (isosbestic control) wavelengths were provided by LEDs (Thorlabs M470F3, M405FP1)
which are collimated into a dichroic mirror holder with a 425 nm long pass filter (Thorlabs
DMLP425R). This is coupled to another dichroic mirror holder with a 495 nm long pass dichroic
(Semrock FF495-Di02-25×36) which redirects the excitation light on to a custom branching
fiberoptic patchcord of five bundled 400 mm diameter 0.22NA fibers (BFP(5)_400/430/1100-
0.48_3m_SMA-5xMF1.25, Doric Lenses) using a 10x/0.5NA Objective lens (Nikon CFI SFluor 10X,
Product No. MRF00100). GCaMP6f fluorescence from neurons below the fiber tip in the brain was
transmitted via this same cable back to the mini-cube, where it was passed through a GFP
emission filter (Semrock FF01-520/35-25), amplified, and focused onto a high sensitivity sCMOS
camera (Prime 95b, Photometrics). The multiple branch ends of a branching fiberoptic patchcord
were used to collect emission fluorescence from 1.25mm diameter light weight ferrules
(MFC_400/430-0.48_ZF1.25, Doric Lenses) using a mating sleeve (Doric SLEEVE_ZR_1.25). The
excitation was alternated between 405nm and 470nm by a custom made JK flip flop which takes
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the trigger input from the sCMOS and triggers the two excitation LEDs alternatively. Bulk activity
signals were collected using Photometrics data acquisition software, Programmable Virtual
Camera Access Method (PVCAM).

Photometry Recordings

While mice performed the self-paced contextual learning VR task we recorded bulk calcium
signals from five regions: ACC, OFC, AM, BLA, and LC simultaneously. Mice shown in Figures
1     -2      with ACC recordings also contained OFC, AM, BLA, and LC recordings, which we compile
and show all together in Figure 3     . We recorded at 18 Hz with excitation wavelengths alternating
between 470 nm and 405nm, capturing calcium dependent and independent signals respectively,
resulting in an effective frame rate of 10 Hz.

Data Processing

For analysis, the images captured by the CMOS camera were post-processed using custom MATLAB
scripts. Regions of interest were manually drawn for each fiber to extract fluorescence values
throughout the experiment. The 405-nm reference trace was scaled to best fit the 470-nm signal
using least-squares regression. The normalized change in fluorescence (dF/F) was calculated by
subtracting the scaled 405-nm reference trace from the 470-nm signal and dividing that value by
the scaled 405-nm reference trace. The true baseline of each dF/F trace was determined and
corrected by using the MATLAB function msbackadj, estimating the baseline over a 200-frame
sliding window, regressing varying baseline values to the window’s data points using a spline
approximation, then adjusting the baseline in the peak range of the dF/F signal.

Bulk neural responses

The adjusted calcium signals from photometry were aligned to task events (for example, cue onset,
reward, trial initiation, etc) in ViRMEn by time-stamping behavioral frames captured through the
NIDAQ. Photometry signals from all animals from a given region were Z-scored across the entire
session. The mean regional responses to task variables (Figures 1     , 2     , 3     ), is the mean of
these aligned Z-scored signals across all animals, with s.e.m. calculated across all recorded trials.
We then sought to quantify the difference in mean average activity patterns observed in response
to each cue presentation. To calculate the differential response to reward and trial initiation
portions of the task (Figure 1     ), we calculated the time it took for dF/F activity to rise above 1std
and speed to rise above 1cm/s (Figure 1F     ) or dF/F activity to rise above 0.5std and speed to rise
above 2cm/s (Figure 1G     ). We zeroed the dF/F activity to the start of reward or 2 seconds prior to
trial initiation.

We then sought to quantify the difference in temporal divergence activity patterns observed in
reward or no-reward cue presentation. To calculate the differential response to cue onset we
calculated the mean Z-scored signal from 0 to 3 seconds after cue onset (Figure 2     ). We also
quantified the difference in pre-cue activity along sequences of trials with 1 or 2 no-reward cues to
identify ramps in neural activity between reward cues (Figure 3     ). We zeroed the pre-cue
activity of all trials within a given sequence to the activity at the time of the first reward cue and
calculated the mean z-scored signal between 2 second before to 0 seconds before cue onset.

In-vivo cellular resolution calcium imaging

Imaging setup

For imaging in Figure 4     , mice were imaged throughout training in 15 min sessions per day.
Volumetric imaging was performed using a resonant galvanometer two-photon imaging system
(Bruker), with a laser (Insight DS+, Spectra Physics) tuned to 920 nm to excite the calcium
indicator, GCaMP6f, through a 16×/0.8 water immersion objective (Nikon) interfacing with an
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Gradient Refractive Index (GRIN) lens through a few drops of distilled water. Prior to each session,
mice were headfixed and each GRIN lens was carefully cleaned with 70% ethanol. Fluorescence
was detected through GaAs photomultiplier tubes using the Prairie View 5.4 acquisition software.
Black dental cement was used to build a well around the implant to minimize light entry into the
objective from the projector. High-speed z-stacks were collected in the green channel (using a
520/44 bandpass filter, Semrock) at 512 × 512 pixels covering each x–y plane of 800 × 800 mm over
a depth of ∼150 μm (30 μm apart) by coupling the 30 Hz rapid resonant scanning (x–y) to a z-piezo
to achieve ∼3.1 Hz per volume. Average beam power measured at the objective during imaging
sessions was between 20–40 mW. An incoming TTL pulse from ViRMEn at the start of behaviour
enabled time-locking of behavioural epochs to imaging frames with millisecond precision.

Source extraction

Calcium imaging data for Figure 4      was acquired by Prairie View 5.4 acquisition software and
subsequently processed using the Suite2p toolbox48     . Motion correction, ROI detection and
neuropil correction were performed as described. Cell identification was verified by manually
validating every extracted source. Cell registration across sessions for Figure 4      was performed
with a combination of custom scripts and existing packages (Cell Reg49     ).

Calculation of single cell dF/F and transient identification

For each cell detected via automated source extraction, a normalized ΔF/F was calculated and
individual Ca2+ transients were identified as previously described46     . Briefly, ΔF/F was defined
as: (F - Fbaseline)/Fbaseline, where F is the raw output (“F”) from the suite2p algorithm, and where
Fbaseline is the baseline fluorescence, calculated as the mean of the fluorescence values for a given
cell, continuously acquired over a 20 s sliding window to account for slow time-scale changes
observed in the fluorescence across the recording session. For all analysis, this dF/F was then
normalized by z-scoring the entire time series across a session. To identify statistically significant
transients, we first calculated an estimate of the noise for each cell using a custom MATLAB script,
with a previously described method50     ,51     . In essence, we identified the limiting noise cutoff
level for a given cell using time periods that are unlikely to contain neural events, and then
defined a transient as significant if it reached above at least 3σ of this estimated noise level. A
custom MATLAB script using the function “findpeaks” was used to identify any remaining obvious
transients not identified by this method (typically when multiple transients occurred in rapid
succession). Additional specifications required transients to persist above this noise level for at
least 300 ms (roughly twice the duration of the half-life decay time of GCaMP6f). The transient
duration was defined as the first and last frames where the dF/F reached 3σ. The value of dF/F was
set to zero outside the duration of every identified transient to minimize effects of residual
background fluorescence.

Single cell cue tuning

To calculate the tuning of an individual cell in anticipation to or during reward or no-reward cues,
we z-scored the trial averaged the activity on a given neuron across all the cue presentations for a
given reward or no-reward trial. A cell was considered tuned if the magnitude of its trial averaged
z-scored activity was at least 0.75 between 3 seconds before or after cue onset. To find tuning for
cues based on previous trial history, we pre-selected cues that were preceded by specific
combinations of trials.

Transient time analysis

To calculate the transient times of an individual cell tracked before and after learning, we first
preselected cells that are tuned to a particular trial sequence (such as NNR). We then identified the
frame when the dF/F value first rises above the noise threshold (see Calculation of single cell dF/F
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and transient identification) 7 seconds before or after cue onset (such as for the R cue in an NNR-
tuned cell). We took all the transients for any given cell across all the trials in a session, in case a
single cell fired more than one transient.

Statistical Analysis
Sample sizes were selected based on expected variance and effect sizes from the existing
literature, and no statistical methods were used to determine sample size a priori. Prior to
experiments being performed, mice were randomly assigned to experimental or control groups.
The investigator was blinded to all behavioral studies. Data analyses for calcium imaging (in vitro
and in vivo datasets) were automated using MATLAB scripts. Statistical tests were performed in
MATLAB 2017a, 2021b, or Graphpad Prism.
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Figure S1.

Task shaping and speed related differences between mice and during ACC inhibition

(A) Left: schematic of behavioral shaping. Mice were shaped to run (>1 cm/s) for increasing durations over the course of 4
days to obtain rewards. Trial averaged plots of speed along the days of shaping (N=3 mice). Red arrow denotes the increasing
duration needed to run to trigger rewards. Right: Days where mice decrease their speed (<1cm/s; stop) during cues for
rewards. Red arrows denote the increasing duration to stop to trigger rewards. Data are mean (solid line) ± s.e.m (shaded
area).
(B) Scatter plots of speed (cm/s) and ACC dF/F during reward (top) or trial initiations (bottom) for individual mice. Individual
data points shown, with a best fit line, represented by the solid line in the figure. r2 and p values, as determined by linear
regression, are shown for each mouse that had a p<0.5.
(C) Left: Trial average plots of speed (cm/s) aligned to trial initiation for saline-administered day (black) or CNO (red; N=4
mice). Data are mean (solid line) ± s.e.m (shaded area). Quantification of speed during trial initiation for mCherry-control
mice (N=187, 214 trials across 6 mice) and hM4D(Gi)-DREADDs mice (N=166, 120 trials across 4 mice). p=0.5692 for mCherry
and *p=0.0217 for hM4Di, unpaired t-test between saline and CNO sessions per group. Data are individual points, with mean
± s.e.m.
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Figure S2.

Lick rate discrimination, ACC learning signal
controls, and ACC inhibition lick rate learning

(A) Left: Percentage of cue presentations with stops, separated by reward and no-reward cues (blue vs orange) and

quantification of stop discrimination index (see Methods) across training. Right: Quantification of lick discrimination

index (see Methods) across training. N=12 mice, data are mean ± s.e.m. *p<0.05, paired t-test between reward and

no-reward each day, or one-way repeated measures ANOVA with post-hoc Tukey’s multiple comparison test between

each training day and preexposure.

(B) Top: Trial average plots of ACC activity (z-scored dF/F) and speed (cm/s) aligned to outcome onset, separated by

reward or no-rewards. Data are mean (solid line) ± s.e.m (shaded area). Bottom: Quantification of the mean dF/F and

speed during outcome. N=12 mice in each group, data are mean ± s.e.m. *p<0.05, paired t-test between reward and

no-reward each day.

(C) Same as B, but for trial initiations after each outcome.

(D) Quantification of ACC dF/F difference between reward and no-reward cues (see Methods) across training. N=12

mice, data are mean ± s.e.m. *p<0.05, one-way repeated measures ANOVA with post-hoc Tukey’s multiple

comparison test between each training day and preexposure.

(E) Left: mean dF/F in ACC (top) and speed (bottom) aligned to cue onset for cue presentations in which stops

occurred (blue vs orange). N=12 mice. Data are mean (dark line) with s.e.m. (shaded area). Right: Quantification of

mean change in dF/F and speed in cue zone, assessed separately for each cue presentation. N=12 mice in each

group, data are mean ± s.e.m. *p<0.05, paired t-test between reward and no-reward each day.

(F) Same as E, but for passive presentation of the reward and no-reward cues.

(G) Top: optogenetic inhibition was targeted to days 1-6 of training and mice were allowed to continue training for

days 7-10. Bottom left: Trial averaged plots of lick rate (hz) aligned to cue onset on T6 for mCherry controls and

GTACR inhibition mice, separated by reward or no reward cues. Bottom right: Quantification of mean lick rate during

cues. N=8 mice for mCherry, 4 for GTACR early inhibition. *p<0.05, paired t-test.

(H) Top: optogenetic inhibition was targeted to days 7-10 of training. Bottom: Trial averaged plots of speed (cm/s)

aligned to cue entry on T10 for GTACR inhibition mice, separated by reward or no reward cues. Quantification of

mean speed during cues. N=8 mice for mCherry, 4 for GTACR late inhibition. *p<0.05, paired t-test. N=4 mice for

GTACR late inhibition. *p<0.05, paired t-test.
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Figure S3.

Motivation signals in bulk projection activity, and behavior of learners

(A) Top: Trial average plots of each projection activity (z-scored dF/F) and speed (cm/s) aligned to reward onset (left) or trial
initiations (right). Data are mean (solid line) ± s.e.m (shaded area). Bottom: Quantification of the mean dF/F change during
reward (left) or trial initiation (right; N=19, 12, 5, 4 mice). Data are mean ± SEM.
(B) Left: Trial average plots of projection activity (z-scored dF/F) aligned to outcome onset, separated by reward or no-
rewards. Data are mean (solid line) ± s.e.m (shaded area). Right: Quantification of the mean dF/F during outcome. N=19, 12,
5, 4 mice, data are mean ± s.e.m.
(C) Same as C, but for trial initiations after each outcome. *p<0.05, paired t-test between reward and no-reward each day.
(D) Plots of stop discrimination across preexposure or training for each mouse in the “Learner” group (top) or “Non-Learner”
group (bottom). Dashed line is shown for 0 and 0.5 stop discrimination.
(E) Lick discrimination between the “Learner” or “Non-Learner” mice. *p<0.05, one-way ANOVA between training days and
preexposure, with post-doc Tukey’s multiple comparison test.
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Figure S4.

Neuron tunings to NNR task structure and inhibition of OFCACC neurons.

(A) Mean z-scored dF/F for every recorded cell, aligned to cue onset separated by current cue and previous cue presentation
(N=115 cells across 5 mice). Red arrow denotes the increased response after no-reward cues when the previous cue was no-
reward.
(B) Left: mean population activity (top; z-scored dF/F) and individual neuron trial averaged activity (bottom) for NNR neurons
during R cues preceded by 2 N, 1 N, or 1R cue presentations. Right, quantification of NNR tuned neurons’ response to R cues
preceded by 2 N, 1 N, or 1 R cue presentations (N=32 cells). *p<0.05, one-way repeated measures ANOVA with post-hoc
Tukey’s multiple comparison test.
(C) Percentage of neurons tuned (std > 0.75 3 seconds before or after cue onset) to R or N cues in total (left) or based on what
cues preceded it one trial before (middle) or across two trials before (right). N=115, 117, 114 cells for “before”, “middle”, and
“after” days. Black arrow denotes the higher percentage of neurons that are tuned to R cues after 2 N cues (NNR cells) before
learning.
(D) Neural sources for a single field of view. Sources captured throughout learning are highlighted in green.
(E) Left: mean animal speed (cm/s) aligned to cue zone entry after reward on T6 for mCherry control or GtACR mice. Black
arrow signifies speed increase during N cues. Right: quantification of mean change speed in cue zone after reward, assessed
separately for each cue presentation. N=10 mice for mCherry and 13 mice for GtACR, *p<0.05, paired t-test.
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Supplementary Video 1

Behavior during learning. Playback speed: 2×. Shown here is a representative mouse learning to
stop in cues that predict reward (blue walls) and run throughout consecutive cue presentations
that predict no-reward (yellow walls). Displayed trial sequence order is reward, no-reward, no-
reward, and reward (RNNR).
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Reviewer #1 (Public Review):

Summary:

This is an interesting report examining activity patterns in mouse ACC and in the OFC
neurons projecting to ACC. In addition, the effects of inactivation are examined. In aggregate,
the results provide new and interesting information about these two brain areas and they
translate motivation into action - a function that it seems intuitively plausible that ACC might
perform but, despite this intuition, there have been comparatively few direct tests of the idea
and little is known of the specific mechanisms. The study is performed carefully and is
written up clearly. There were just a few points where I wondered if a little more clarification
might be helpful.

Strengths:

The combination of recording and inactivation/inhibition experiments and the combination
of investigation of ACC neurons and of OFC regions projecting to ACC are very impressive.

Weaknesses:

These are all minor points of clarification.

(1) An important conclusion (Figure 4) is that when mice are trained to run through no
reward (N) cues in order to reach reward (R) cues, the OFC neurons projecting to ACC each
respond to different specific events in a manner that ensures that collectively they tile the
extended behavioural sequence. What I was less sure of was whether the ACC neurons do the
same or not. Figure 3 suggests that on average ACC neurons maintain activity across N cues in

https://doi.org/10.7554/eLife.93983.1
http://creativecommons.org/licenses/by/4.0/
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order to get to R cues but I was not sure whether this was because all individual neurons did
this or whether some had activity patterns like the OFC neurons projecting to ACC.

(2) Figure 1 versus Figure 2: There does not seem to be a particular motivation for whether
chemogenetic inactivation or optogenetic inhibition were used in different experiments. I
think that this is not problematic but, if I am wrong and there were specific reasons for
performing each experiment in a certain way, then further clarification as to why these
decisions were made would be useful. If there is no particular reason, then simply explaining
that this is the case might stop readers from seeking explanations.

(3) P5, paragraph 2. The authors argue that OFC and anteriomedial (AM) thalamic inputs into
ACC are especially important for mediating motivation through N cues in order to reach R
cues. Is this based on a statistical comparison between the activity in OFC or AM inputs as
opposed to the other inputs?

(4) P3, paragraph 2. Some papers by Khalighinejad and colleagues (eg Neuron 2020, Current
Biology, 2022) might be helpful here in as much as they assess ACC roles in determining
action frequency, initiation, and speed and mediating the relationship between reward
availability and action frequency and speed.

(5) Paragraph 1 "This learning is of a more deliberate, informed nature than habitual
learning, as they are sensitive to the current value of outcomes and can lead to a novel
sequence of actions for a desired outcome1-3." Should "they" be "it"?

https://doi.org/10.7554/eLife.93983.1.sa1

Reviewer #2 (Public Review):

Summary:

Regalado et al. studied how an extended motivational state, necessary for maintaining
behavioural drive despite unrewarding experiences, could be encoded in the ACC and its
potential causal implications for learning discriminatory behaviour and avoiding
unrewarding stimuli. They designed a self-initiated learning task and identified bulk neural
responses tuned specifically to reward delivery as well as trial initiation. Interestingly, in
both cases, neural activity precedes behavioural onset, indicating the encoding of a
motivational signal. To investigate the neural encoding of motivational signals during
unrewarded, distracting stimuli presentation, they created a discrimination task by
introducing 'no reward' cues, during which animals need to learn not to reduce running
speed and not engage in licking. Interestingly, with mice learning to increase running speed
and reduce licking rates after 'no reward' cues, the preceding ACC activity also gradually
increased. Importantly, only the increase in running speed after 'no reward' cues was
impaired upon optogenetic inhibition of ACC activity during early training, linking the
extended motivational signal in ACC and learning to maximise rewards by actively avoiding
distracting and unrewarded stimuli. Such motivational signals could also be observed in OFC-
ACC projecting neurons. Especially the continuous ramping of activity upon repeated 'non-
reward' cues, which could be exclusively observed in the 'fast learner' subgroup, provides an
interesting concept of how an extended motivational signal necessary for learning avoidance
of unrewarded stimuli could be implemented in ACC. The shift in the temporal activity of
initially reward-responsive neurons towards the preceding 'no reward' cue, provides a
potential mechanism linking extended motivation to reward maximisation. This mechanism
seems to be particularly important in periods of persistent 'non-reward' cues, as
demonstrated in the impairment of running speed increase after two consecutive 'non-
reward' cues.

https://doi.org/10.7554/eLife.93983.1
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Appraisal:

The authors provide convincing experimental evidence to support their claims of an
extended motivational signal encoded in the ACC that is implemented by OFC-ACC signalling
and critically involved in learning avoidance of unrewarded stimuli. The newly designed task
seems appropriate to identify correlates of relevant cognitive and behavioural variables (e.g.
sustained motivation). The combination of recording Ca2+ transients (bulk as well as
longitudinal single neuron recordings) to identify potential neural responses and subsequent
evaluation of their causal role in establishing and maintaining this persistent motivational
state using opto- and pharmacogenetic manipulations is generally accepted.

Impact:

The findings will be valuable for further research on the impact of motivational states on
behaviour and cognition. The authors provided a promising concept of how persistent
motivational states could be maintained, as well as established a novel, reproducible task
assay. While experimental methods used are currently state-of-the-art, theoretical analysis
seems to be incomplete/not extensive.

https://doi.org/10.7554/eLife.93983.1.sa0
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